Cargando…
Cross-linking and modification of fibronectin by peroxynitrous acid: Mapping and quantification of damage provides a new model for domain interactions
Fibronectin (FN) is an abundant glycoprotein found in plasma and the extracellular matrix (ECM). It is present at high concentrations at sites of tissue damage, where it is exposed to oxidants generated by activated leukocytes, including peroxynitrous acid (ONOOH) formed from nitric oxide (from indu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7950325/ https://www.ncbi.nlm.nih.gov/pubmed/33539924 http://dx.doi.org/10.1016/j.jbc.2021.100360 |
_version_ | 1783663565989740544 |
---|---|
author | Mariotti, Michele Rogowska-Wrzesinska, Adelina Hägglund, Per Davies, Michael J. |
author_facet | Mariotti, Michele Rogowska-Wrzesinska, Adelina Hägglund, Per Davies, Michael J. |
author_sort | Mariotti, Michele |
collection | PubMed |
description | Fibronectin (FN) is an abundant glycoprotein found in plasma and the extracellular matrix (ECM). It is present at high concentrations at sites of tissue damage, where it is exposed to oxidants generated by activated leukocytes, including peroxynitrous acid (ONOOH) formed from nitric oxide (from inducible nitric oxide synthase) and superoxide radicals (from NADPH oxidases and other sources). ONOOH reacts rapidly with the abundant tyrosine and tryptophan residues in ECM proteins, resulting in the formation of 3-nitrotyrosine, di-tyrosine, and 6-nitrotryptophan. We have shown previously that human plasma FN is readily modified by ONOOH, but the extent and location of modifications, and the role of FN structure (compact versus extended) in determining these factors is poorly understood. Here, we provide a detailed LC-MS analysis of ONOOH-induced FN modifications, including the extent of their formation and the sites of intramolecular and intermolecular cross-links, including Tyr-Tyr, Trp-Trp, and Tyr-Trp linkages. The localization of these cross-links to specific domains provides novel data on the interactions between different modules in the compact conformation of plasma FN and allows us to propose a model of its unknown quaternary structure. Interestingly, the pattern of modifications is significantly different to that generated by another inflammatory oxidant, HOCl, in both extent and sites. The characterization and quantification of these modifications offers the possibility of the use of these materials as specific biomarkers of ECM modification and turnover in the many pathologies associated with inflammation-associated fibrosis. |
format | Online Article Text |
id | pubmed-7950325 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-79503252021-03-19 Cross-linking and modification of fibronectin by peroxynitrous acid: Mapping and quantification of damage provides a new model for domain interactions Mariotti, Michele Rogowska-Wrzesinska, Adelina Hägglund, Per Davies, Michael J. J Biol Chem Research Article Fibronectin (FN) is an abundant glycoprotein found in plasma and the extracellular matrix (ECM). It is present at high concentrations at sites of tissue damage, where it is exposed to oxidants generated by activated leukocytes, including peroxynitrous acid (ONOOH) formed from nitric oxide (from inducible nitric oxide synthase) and superoxide radicals (from NADPH oxidases and other sources). ONOOH reacts rapidly with the abundant tyrosine and tryptophan residues in ECM proteins, resulting in the formation of 3-nitrotyrosine, di-tyrosine, and 6-nitrotryptophan. We have shown previously that human plasma FN is readily modified by ONOOH, but the extent and location of modifications, and the role of FN structure (compact versus extended) in determining these factors is poorly understood. Here, we provide a detailed LC-MS analysis of ONOOH-induced FN modifications, including the extent of their formation and the sites of intramolecular and intermolecular cross-links, including Tyr-Tyr, Trp-Trp, and Tyr-Trp linkages. The localization of these cross-links to specific domains provides novel data on the interactions between different modules in the compact conformation of plasma FN and allows us to propose a model of its unknown quaternary structure. Interestingly, the pattern of modifications is significantly different to that generated by another inflammatory oxidant, HOCl, in both extent and sites. The characterization and quantification of these modifications offers the possibility of the use of these materials as specific biomarkers of ECM modification and turnover in the many pathologies associated with inflammation-associated fibrosis. American Society for Biochemistry and Molecular Biology 2021-02-02 /pmc/articles/PMC7950325/ /pubmed/33539924 http://dx.doi.org/10.1016/j.jbc.2021.100360 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Mariotti, Michele Rogowska-Wrzesinska, Adelina Hägglund, Per Davies, Michael J. Cross-linking and modification of fibronectin by peroxynitrous acid: Mapping and quantification of damage provides a new model for domain interactions |
title | Cross-linking and modification of fibronectin by peroxynitrous acid: Mapping and quantification of damage provides a new model for domain interactions |
title_full | Cross-linking and modification of fibronectin by peroxynitrous acid: Mapping and quantification of damage provides a new model for domain interactions |
title_fullStr | Cross-linking and modification of fibronectin by peroxynitrous acid: Mapping and quantification of damage provides a new model for domain interactions |
title_full_unstemmed | Cross-linking and modification of fibronectin by peroxynitrous acid: Mapping and quantification of damage provides a new model for domain interactions |
title_short | Cross-linking and modification of fibronectin by peroxynitrous acid: Mapping and quantification of damage provides a new model for domain interactions |
title_sort | cross-linking and modification of fibronectin by peroxynitrous acid: mapping and quantification of damage provides a new model for domain interactions |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7950325/ https://www.ncbi.nlm.nih.gov/pubmed/33539924 http://dx.doi.org/10.1016/j.jbc.2021.100360 |
work_keys_str_mv | AT mariottimichele crosslinkingandmodificationoffibronectinbyperoxynitrousacidmappingandquantificationofdamageprovidesanewmodelfordomaininteractions AT rogowskawrzesinskaadelina crosslinkingandmodificationoffibronectinbyperoxynitrousacidmappingandquantificationofdamageprovidesanewmodelfordomaininteractions AT hagglundper crosslinkingandmodificationoffibronectinbyperoxynitrousacidmappingandquantificationofdamageprovidesanewmodelfordomaininteractions AT daviesmichaelj crosslinkingandmodificationoffibronectinbyperoxynitrousacidmappingandquantificationofdamageprovidesanewmodelfordomaininteractions |