Cargando…
Development and clinical evaluation of a contactless operating interface for three-dimensional image-guided navigation for endovascular neurosurgery
PURPOSE: In endovascular neurosurgery, the operator often acquires three-dimensional (3D) images of the cerebral vessels. Although workstation reoperation is required in some situations during treatment, it leads to time loss because a sterile condition cannot be maintained and treatment must be tem...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7951120/ https://www.ncbi.nlm.nih.gov/pubmed/33709240 http://dx.doi.org/10.1007/s11548-021-02330-3 |
_version_ | 1783663590036733952 |
---|---|
author | Nishihori, Masahiro Izumi, Takashi Nagano, Yoshitaka Sato, Masaki Tsukada, Tetsuya Kropp, Asuka Elisabeth Wakabayashi, Toshihiko |
author_facet | Nishihori, Masahiro Izumi, Takashi Nagano, Yoshitaka Sato, Masaki Tsukada, Tetsuya Kropp, Asuka Elisabeth Wakabayashi, Toshihiko |
author_sort | Nishihori, Masahiro |
collection | PubMed |
description | PURPOSE: In endovascular neurosurgery, the operator often acquires three-dimensional (3D) images of the cerebral vessels. Although workstation reoperation is required in some situations during treatment, it leads to time loss because a sterile condition cannot be maintained and treatment must be temporarily interrupted. Therefore, a workstation reoperating system is required while maintaining the desired sterility. METHODS: A contactless operating interface using Kinect to control 3D images was developed via gesture recognition for endovascular neurosurgery and was applied to a 3D volume rendering technique (VRT) image reconstructed at the workstation. The left-hand movement determines the assigned functions, whereas the right-hand movement is used like a computer mouse to pan and zoom in/out. In addition to the interface, voice commands were used and assigned to digital operations, such as image view changes and mode signal changes. RESULTS: This system was used for the actual endovascular treatment of cerebral aneurysms and cerebral arteriovenous malformations. The operator and gesture were recognized without any problems. Using voice operation, it was possible to expeditiously set the VRT image back to the reference angle. Furthermore, it was possible to finely adjust gesture operations, including mouse operation, and treatment was completed while maintaining sterile conditions. CONCLUSION: A contactless operating interface was developed by combining the existing workstation system with Kinect and voice recognition software, allowing surgeons to perform a series of operations, which are normally performed in a console room, while maintaining sterile conditions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11548-021-02330-3. |
format | Online Article Text |
id | pubmed-7951120 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-79511202021-03-12 Development and clinical evaluation of a contactless operating interface for three-dimensional image-guided navigation for endovascular neurosurgery Nishihori, Masahiro Izumi, Takashi Nagano, Yoshitaka Sato, Masaki Tsukada, Tetsuya Kropp, Asuka Elisabeth Wakabayashi, Toshihiko Int J Comput Assist Radiol Surg Original Article PURPOSE: In endovascular neurosurgery, the operator often acquires three-dimensional (3D) images of the cerebral vessels. Although workstation reoperation is required in some situations during treatment, it leads to time loss because a sterile condition cannot be maintained and treatment must be temporarily interrupted. Therefore, a workstation reoperating system is required while maintaining the desired sterility. METHODS: A contactless operating interface using Kinect to control 3D images was developed via gesture recognition for endovascular neurosurgery and was applied to a 3D volume rendering technique (VRT) image reconstructed at the workstation. The left-hand movement determines the assigned functions, whereas the right-hand movement is used like a computer mouse to pan and zoom in/out. In addition to the interface, voice commands were used and assigned to digital operations, such as image view changes and mode signal changes. RESULTS: This system was used for the actual endovascular treatment of cerebral aneurysms and cerebral arteriovenous malformations. The operator and gesture were recognized without any problems. Using voice operation, it was possible to expeditiously set the VRT image back to the reference angle. Furthermore, it was possible to finely adjust gesture operations, including mouse operation, and treatment was completed while maintaining sterile conditions. CONCLUSION: A contactless operating interface was developed by combining the existing workstation system with Kinect and voice recognition software, allowing surgeons to perform a series of operations, which are normally performed in a console room, while maintaining sterile conditions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11548-021-02330-3. Springer International Publishing 2021-03-11 2021 /pmc/articles/PMC7951120/ /pubmed/33709240 http://dx.doi.org/10.1007/s11548-021-02330-3 Text en © CARS 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Original Article Nishihori, Masahiro Izumi, Takashi Nagano, Yoshitaka Sato, Masaki Tsukada, Tetsuya Kropp, Asuka Elisabeth Wakabayashi, Toshihiko Development and clinical evaluation of a contactless operating interface for three-dimensional image-guided navigation for endovascular neurosurgery |
title | Development and clinical evaluation of a contactless operating interface for three-dimensional image-guided navigation for endovascular neurosurgery |
title_full | Development and clinical evaluation of a contactless operating interface for three-dimensional image-guided navigation for endovascular neurosurgery |
title_fullStr | Development and clinical evaluation of a contactless operating interface for three-dimensional image-guided navigation for endovascular neurosurgery |
title_full_unstemmed | Development and clinical evaluation of a contactless operating interface for three-dimensional image-guided navigation for endovascular neurosurgery |
title_short | Development and clinical evaluation of a contactless operating interface for three-dimensional image-guided navigation for endovascular neurosurgery |
title_sort | development and clinical evaluation of a contactless operating interface for three-dimensional image-guided navigation for endovascular neurosurgery |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7951120/ https://www.ncbi.nlm.nih.gov/pubmed/33709240 http://dx.doi.org/10.1007/s11548-021-02330-3 |
work_keys_str_mv | AT nishihorimasahiro developmentandclinicalevaluationofacontactlessoperatinginterfaceforthreedimensionalimageguidednavigationforendovascularneurosurgery AT izumitakashi developmentandclinicalevaluationofacontactlessoperatinginterfaceforthreedimensionalimageguidednavigationforendovascularneurosurgery AT naganoyoshitaka developmentandclinicalevaluationofacontactlessoperatinginterfaceforthreedimensionalimageguidednavigationforendovascularneurosurgery AT satomasaki developmentandclinicalevaluationofacontactlessoperatinginterfaceforthreedimensionalimageguidednavigationforendovascularneurosurgery AT tsukadatetsuya developmentandclinicalevaluationofacontactlessoperatinginterfaceforthreedimensionalimageguidednavigationforendovascularneurosurgery AT kroppasukaelisabeth developmentandclinicalevaluationofacontactlessoperatinginterfaceforthreedimensionalimageguidednavigationforendovascularneurosurgery AT wakabayashitoshihiko developmentandclinicalevaluationofacontactlessoperatinginterfaceforthreedimensionalimageguidednavigationforendovascularneurosurgery |