Cargando…

Clinical efficacy on glycemic control and safety of mesenchymal stem cells in patients with diabetes mellitus: Systematic review and meta-analysis of RCT data

BACKGROUND: Diabetes mellitus as a chronic metabolic disease is threatening human health seriously. Although numerous clinical trials have been registered for the treatment of diabetes with stem cells, no articles have been published to summarize the efficacy and safety of mesenchymal stem cells (MS...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Jingjing, Kong, Desheng, Yang, Zhifen, Guo, Ruiyun, Amponsah, Asiamah Ernest, Feng, Baofeng, Zhang, Xiaolin, Zhang, Wei, Liu, Aijing, Ma, Jun, O’Brien, Timothy, Cui, Huixian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7951834/
https://www.ncbi.nlm.nih.gov/pubmed/33705413
http://dx.doi.org/10.1371/journal.pone.0247662
Descripción
Sumario:BACKGROUND: Diabetes mellitus as a chronic metabolic disease is threatening human health seriously. Although numerous clinical trials have been registered for the treatment of diabetes with stem cells, no articles have been published to summarize the efficacy and safety of mesenchymal stem cells (MSCs) in randomized controlled trials (RCTs). METHODS AND FINDINGS: The aim of this study was to systematically review the evidence from RCTs and, where possible, conduct meta-analyses to provide a reliable numerical summary and the most comprehensive assessment of therapeutic efficacy and safety with MSCs in diabetes. PubMed, Web of Science, Ovid, the Cochrane Library and CNKI were searched. The retrieval time was from establishment of these databases to January 4, 2020. Seven RCTs were eligible for analysis, including 413 participants. Meta-analysis results showed that there were no significant differences in the reduction of fasting plasma glucose (FPG) compared to the baseline [mean difference (MD) = -1.05, 95% confidence interval (CI) (-2.26,0.16), P<0.01, I(2) = 94%] and the control group [MD = -0.62, 95%CI (-1.46,0.23), P<0.01, I(2) = 87%]. The MSCs treatment group showed a significant decrease in hemoglobin (Hb) A1c [random-effects, MD = -1.32, 95%CI (-2.06, -0.57), P<0.01, I(2) = 90%] after treatment. Additionally, HbA1c reduced more significantly in MSC treatment group than in control group [random-effects, MD = -0.87, 95%CI (-1.53, -0.22), P<0.01, I(2) = 82%] at the end of follow-up. However, as for fasting C-peptide levels, the estimated pooled MD showed that there was no significant increase [MD = -0.07, 95%CI (-0.30, 0.16), P<0.01, I(2) = 94%] in MSCs treatment group compared with that in control group. Notably, there was no significant difference in the incidence of adverse events between MSCs treatment group and control group [relative risk (RR) = 0.98, 95%CI (0.72, 1.32), P = 0.02, I(2) = 70%]. The most commonly observed adverse reaction in the MSC treatment group was hypoglycemia (29.95%). CONCLUSIONS: This meta-analysis revealed MSCs therapy may be an effective and safe intervention in subjects with diabetes. However, due to the limited studies, a number of high-quality as well as large-scale RCTs should be performed to confirm these conclusions.