Cargando…
Diagnostic Accuracy of Machine Learning-Based Radiomics in Grading Gliomas: Systematic Review and Meta-Analysis
PURPOSE: This study aimed to estimate the diagnostic accuracy of machine learning- (ML-) based radiomics in differentiating high-grade gliomas (HGG) from low-grade gliomas (LGG) and to identify potential covariates that could affect the diagnostic accuracy of ML-based radiomic analysis in classifyin...
Autores principales: | Sohn, Curtis K., Bisdas, Sotirios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952179/ https://www.ncbi.nlm.nih.gov/pubmed/33746649 http://dx.doi.org/10.1155/2020/2127062 |
Ejemplares similares
-
The value of arterial spin labelling in adults glioma grading: systematic review and meta-analysis
por: Alsaedi, Amirah, et al.
Publicado: (2019) -
Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status
por: Sudre, Carole H., et al.
Publicado: (2020) -
Diagnostic accuracy of dynamic contrast‐enhanced perfusion MRI in stratifying gliomas: A systematic review and meta‐analysis
por: Okuchi, Sachi, et al.
Publicado: (2019) -
Deep learning for prediction of isocitrate dehydrogenase mutation in gliomas: a critical approach, systematic review and meta-analysis of the diagnostic test performance using a Bayesian approach
por: Karabacak, Mert, et al.
Publicado: (2022) -
Role of diffusional kurtosis imaging in grading of brain gliomas: a protocol for systematic review and meta-analysis
por: Abdalla, Gehad, et al.
Publicado: (2018)