Cargando…
Double sulfur vacancies by lithium tuning enhance CO(2) electroreduction to n-propanol
Electrochemical CO(2) reduction can produce valuable products with high energy densities but the process is plagued by poor selectivities and low yields. Propanol represents a challenging product to obtain due to the complicated C(3) forming mechanism that requires both stabilization of *C(2) interm...
Autores principales: | Peng, Chen, Luo, Gan, Zhang, Junbo, Chen, Menghuan, Wang, Zhiqiang, Sham, Tsun-Kong, Zhang, Lijuan, Li, Yafei, Zheng, Gengfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952561/ https://www.ncbi.nlm.nih.gov/pubmed/33707465 http://dx.doi.org/10.1038/s41467-021-21901-1 |
Ejemplares similares
-
High‐Pressure CO Electroreduction at Silver Produces Ethanol and Propanol
por: Raaijman, Stefan J., et al.
Publicado: (2021) -
Promoting CO(2) Electroreduction to Acetate
by an Amine-Terminal, Dendrimer-Functionalized Cu Catalyst
por: Yang, Li, et al.
Publicado: (2023) -
Promoting N(2) electroreduction to ammonia by fluorine-terminating Ti(3)C(2)T(x) MXene
por: Ding, Yu, et al.
Publicado: (2021) -
Oxygen Vacancies in Bismuth Tantalum Oxide to Anchor Polysulfide and Accelerate the Sulfur Evolution Reaction in Lithium–Sulfur Batteries
por: Wang, Chong, et al.
Publicado: (2022) -
Cation Vacancies in Feroxyhyte Nanosheets toward Fast Kinetics in Lithium–Sulfur Batteries
por: Niu, Aimin, et al.
Publicado: (2023)