Cargando…
A new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer
A subset of prostate cancer displays a poor clinical outcome. Therefore, identifying this poor prognostic subset within clinically aggressive groups (defined as a Gleason score (GS) ≧8) and developing effective treatments are essential if we are to improve prostate cancer survival. Here, we performe...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952695/ https://www.ncbi.nlm.nih.gov/pubmed/33707553 http://dx.doi.org/10.1038/s41598-021-85086-9 |
_version_ | 1783663784811823104 |
---|---|
author | Iwata, Teppei Sedukhina, Anna S. Kubota, Manabu Oonuma, Shigeko Maeda, Ichiro Yoshiike, Miki Usuba, Wataru Minagawa, Kimino Hames, Eleina Meguro, Rei Cho, Sunny Chien, Stephen H. H. Urabe, Shiro Pae, Sookhee Palanisamy, Kishore Kumai, Toshio Yudo, Kazuo Kikuchi, Eiji Sato, Ko |
author_facet | Iwata, Teppei Sedukhina, Anna S. Kubota, Manabu Oonuma, Shigeko Maeda, Ichiro Yoshiike, Miki Usuba, Wataru Minagawa, Kimino Hames, Eleina Meguro, Rei Cho, Sunny Chien, Stephen H. H. Urabe, Shiro Pae, Sookhee Palanisamy, Kishore Kumai, Toshio Yudo, Kazuo Kikuchi, Eiji Sato, Ko |
author_sort | Iwata, Teppei |
collection | PubMed |
description | A subset of prostate cancer displays a poor clinical outcome. Therefore, identifying this poor prognostic subset within clinically aggressive groups (defined as a Gleason score (GS) ≧8) and developing effective treatments are essential if we are to improve prostate cancer survival. Here, we performed a bioinformatics analysis of a TCGA dataset (GS ≧8) to identify pathways upregulated in a prostate cancer cohort with short survival. When conducting bioinformatics analyses, the definition of factors such as “overexpression” and “shorter survival” is vital, as poor definition may lead to mis-estimations. To eliminate this possibility, we defined an expression cutoff value using an algorithm calculated by a Cox regression model, and the hazard ratio for each gene was set so as to identify genes whose expression levels were associated with shorter survival. Next, genes associated with shorter survival were entered into pathway analysis to identify pathways that were altered in a shorter survival cohort. We identified pathways involving upregulation of GRB2. Overexpression of GRB2 was linked to shorter survival in the TCGA dataset, a finding validated by histological examination of biopsy samples taken from the patients for diagnostic purposes. Thus, GRB2 is a novel biomarker that predicts shorter survival of patients with aggressive prostate cancer (GS ≧8). |
format | Online Article Text |
id | pubmed-7952695 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-79526952021-03-15 A new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer Iwata, Teppei Sedukhina, Anna S. Kubota, Manabu Oonuma, Shigeko Maeda, Ichiro Yoshiike, Miki Usuba, Wataru Minagawa, Kimino Hames, Eleina Meguro, Rei Cho, Sunny Chien, Stephen H. H. Urabe, Shiro Pae, Sookhee Palanisamy, Kishore Kumai, Toshio Yudo, Kazuo Kikuchi, Eiji Sato, Ko Sci Rep Article A subset of prostate cancer displays a poor clinical outcome. Therefore, identifying this poor prognostic subset within clinically aggressive groups (defined as a Gleason score (GS) ≧8) and developing effective treatments are essential if we are to improve prostate cancer survival. Here, we performed a bioinformatics analysis of a TCGA dataset (GS ≧8) to identify pathways upregulated in a prostate cancer cohort with short survival. When conducting bioinformatics analyses, the definition of factors such as “overexpression” and “shorter survival” is vital, as poor definition may lead to mis-estimations. To eliminate this possibility, we defined an expression cutoff value using an algorithm calculated by a Cox regression model, and the hazard ratio for each gene was set so as to identify genes whose expression levels were associated with shorter survival. Next, genes associated with shorter survival were entered into pathway analysis to identify pathways that were altered in a shorter survival cohort. We identified pathways involving upregulation of GRB2. Overexpression of GRB2 was linked to shorter survival in the TCGA dataset, a finding validated by histological examination of biopsy samples taken from the patients for diagnostic purposes. Thus, GRB2 is a novel biomarker that predicts shorter survival of patients with aggressive prostate cancer (GS ≧8). Nature Publishing Group UK 2021-03-11 /pmc/articles/PMC7952695/ /pubmed/33707553 http://dx.doi.org/10.1038/s41598-021-85086-9 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Iwata, Teppei Sedukhina, Anna S. Kubota, Manabu Oonuma, Shigeko Maeda, Ichiro Yoshiike, Miki Usuba, Wataru Minagawa, Kimino Hames, Eleina Meguro, Rei Cho, Sunny Chien, Stephen H. H. Urabe, Shiro Pae, Sookhee Palanisamy, Kishore Kumai, Toshio Yudo, Kazuo Kikuchi, Eiji Sato, Ko A new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer |
title | A new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer |
title_full | A new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer |
title_fullStr | A new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer |
title_full_unstemmed | A new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer |
title_short | A new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer |
title_sort | new bioinformatics approach identifies overexpression of grb2 as a poor prognostic biomarker for prostate cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952695/ https://www.ncbi.nlm.nih.gov/pubmed/33707553 http://dx.doi.org/10.1038/s41598-021-85086-9 |
work_keys_str_mv | AT iwatateppei anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT sedukhinaannas anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT kubotamanabu anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT oonumashigeko anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT maedaichiro anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT yoshiikemiki anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT usubawataru anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT minagawakimino anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT hameseleina anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT megurorei anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT chosunny anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT chienstephenhh anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT urabeshiro anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT paesookhee anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT palanisamykishore anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT kumaitoshio anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT yudokazuo anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT kikuchieiji anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT satoko anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT iwatateppei newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT sedukhinaannas newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT kubotamanabu newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT oonumashigeko newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT maedaichiro newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT yoshiikemiki newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT usubawataru newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT minagawakimino newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT hameseleina newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT megurorei newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT chosunny newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT chienstephenhh newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT urabeshiro newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT paesookhee newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT palanisamykishore newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT kumaitoshio newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT yudokazuo newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT kikuchieiji newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT satoko newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer |