Cargando…

Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules

Spin crossover (SCO) molecules are promising nanoscale magnetic switches due to their ability to modify their spin state under several stimuli. However, SCO systems face several bottlenecks when downscaling into nanoscale spintronic devices: their instability at the nanoscale, their insulating chara...

Descripción completa

Detalles Bibliográficos
Autores principales: Villalva, Julia, Develioglu, Aysegul, Montenegro-Pohlhammer, Nicolas, Sánchez-de-Armas, Rocío, Gamonal, Arturo, Rial, Eduardo, García-Hernández, Mar, Ruiz-Gonzalez, Luisa, Costa, José Sánchez, Calzado, Carmen J., Pérez, Emilio M., Burzurí, Enrique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952721/
https://www.ncbi.nlm.nih.gov/pubmed/33707459
http://dx.doi.org/10.1038/s41467-021-21791-3
_version_ 1783663791018344448
author Villalva, Julia
Develioglu, Aysegul
Montenegro-Pohlhammer, Nicolas
Sánchez-de-Armas, Rocío
Gamonal, Arturo
Rial, Eduardo
García-Hernández, Mar
Ruiz-Gonzalez, Luisa
Costa, José Sánchez
Calzado, Carmen J.
Pérez, Emilio M.
Burzurí, Enrique
author_facet Villalva, Julia
Develioglu, Aysegul
Montenegro-Pohlhammer, Nicolas
Sánchez-de-Armas, Rocío
Gamonal, Arturo
Rial, Eduardo
García-Hernández, Mar
Ruiz-Gonzalez, Luisa
Costa, José Sánchez
Calzado, Carmen J.
Pérez, Emilio M.
Burzurí, Enrique
author_sort Villalva, Julia
collection PubMed
description Spin crossover (SCO) molecules are promising nanoscale magnetic switches due to their ability to modify their spin state under several stimuli. However, SCO systems face several bottlenecks when downscaling into nanoscale spintronic devices: their instability at the nanoscale, their insulating character and the lack of control when positioning nanocrystals in nanodevices. Here we show the encapsulation of robust Fe-based SCO molecules within the 1D cavities of single-walled carbon nanotubes (SWCNT). We find that the SCO mechanism endures encapsulation and positioning of individual heterostructures in nanoscale transistors. The SCO switch in the guest molecules triggers a large conductance bistability through the host SWCNT. Moreover, the SCO transition shifts to higher temperatures and displays hysteresis cycles, and thus memory effect, not present in crystalline samples. Our results demonstrate how encapsulation in SWCNTs provides the backbone for the readout and positioning of SCO molecules into nanodevices, and can also help to tune their magnetic properties at the nanoscale.
format Online
Article
Text
id pubmed-7952721
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-79527212021-03-28 Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules Villalva, Julia Develioglu, Aysegul Montenegro-Pohlhammer, Nicolas Sánchez-de-Armas, Rocío Gamonal, Arturo Rial, Eduardo García-Hernández, Mar Ruiz-Gonzalez, Luisa Costa, José Sánchez Calzado, Carmen J. Pérez, Emilio M. Burzurí, Enrique Nat Commun Article Spin crossover (SCO) molecules are promising nanoscale magnetic switches due to their ability to modify their spin state under several stimuli. However, SCO systems face several bottlenecks when downscaling into nanoscale spintronic devices: their instability at the nanoscale, their insulating character and the lack of control when positioning nanocrystals in nanodevices. Here we show the encapsulation of robust Fe-based SCO molecules within the 1D cavities of single-walled carbon nanotubes (SWCNT). We find that the SCO mechanism endures encapsulation and positioning of individual heterostructures in nanoscale transistors. The SCO switch in the guest molecules triggers a large conductance bistability through the host SWCNT. Moreover, the SCO transition shifts to higher temperatures and displays hysteresis cycles, and thus memory effect, not present in crystalline samples. Our results demonstrate how encapsulation in SWCNTs provides the backbone for the readout and positioning of SCO molecules into nanodevices, and can also help to tune their magnetic properties at the nanoscale. Nature Publishing Group UK 2021-03-11 /pmc/articles/PMC7952721/ /pubmed/33707459 http://dx.doi.org/10.1038/s41467-021-21791-3 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Villalva, Julia
Develioglu, Aysegul
Montenegro-Pohlhammer, Nicolas
Sánchez-de-Armas, Rocío
Gamonal, Arturo
Rial, Eduardo
García-Hernández, Mar
Ruiz-Gonzalez, Luisa
Costa, José Sánchez
Calzado, Carmen J.
Pérez, Emilio M.
Burzurí, Enrique
Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
title Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
title_full Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
title_fullStr Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
title_full_unstemmed Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
title_short Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
title_sort spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952721/
https://www.ncbi.nlm.nih.gov/pubmed/33707459
http://dx.doi.org/10.1038/s41467-021-21791-3
work_keys_str_mv AT villalvajulia spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT develiogluaysegul spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT montenegropohlhammernicolas spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT sanchezdearmasrocio spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT gamonalarturo spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT rialeduardo spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT garciahernandezmar spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT ruizgonzalezluisa spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT costajosesanchez spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT calzadocarmenj spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT perezemiliom spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules
AT burzurienrique spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules