Cargando…
Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
Spin crossover (SCO) molecules are promising nanoscale magnetic switches due to their ability to modify their spin state under several stimuli. However, SCO systems face several bottlenecks when downscaling into nanoscale spintronic devices: their instability at the nanoscale, their insulating chara...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952721/ https://www.ncbi.nlm.nih.gov/pubmed/33707459 http://dx.doi.org/10.1038/s41467-021-21791-3 |
_version_ | 1783663791018344448 |
---|---|
author | Villalva, Julia Develioglu, Aysegul Montenegro-Pohlhammer, Nicolas Sánchez-de-Armas, Rocío Gamonal, Arturo Rial, Eduardo García-Hernández, Mar Ruiz-Gonzalez, Luisa Costa, José Sánchez Calzado, Carmen J. Pérez, Emilio M. Burzurí, Enrique |
author_facet | Villalva, Julia Develioglu, Aysegul Montenegro-Pohlhammer, Nicolas Sánchez-de-Armas, Rocío Gamonal, Arturo Rial, Eduardo García-Hernández, Mar Ruiz-Gonzalez, Luisa Costa, José Sánchez Calzado, Carmen J. Pérez, Emilio M. Burzurí, Enrique |
author_sort | Villalva, Julia |
collection | PubMed |
description | Spin crossover (SCO) molecules are promising nanoscale magnetic switches due to their ability to modify their spin state under several stimuli. However, SCO systems face several bottlenecks when downscaling into nanoscale spintronic devices: their instability at the nanoscale, their insulating character and the lack of control when positioning nanocrystals in nanodevices. Here we show the encapsulation of robust Fe-based SCO molecules within the 1D cavities of single-walled carbon nanotubes (SWCNT). We find that the SCO mechanism endures encapsulation and positioning of individual heterostructures in nanoscale transistors. The SCO switch in the guest molecules triggers a large conductance bistability through the host SWCNT. Moreover, the SCO transition shifts to higher temperatures and displays hysteresis cycles, and thus memory effect, not present in crystalline samples. Our results demonstrate how encapsulation in SWCNTs provides the backbone for the readout and positioning of SCO molecules into nanodevices, and can also help to tune their magnetic properties at the nanoscale. |
format | Online Article Text |
id | pubmed-7952721 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-79527212021-03-28 Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules Villalva, Julia Develioglu, Aysegul Montenegro-Pohlhammer, Nicolas Sánchez-de-Armas, Rocío Gamonal, Arturo Rial, Eduardo García-Hernández, Mar Ruiz-Gonzalez, Luisa Costa, José Sánchez Calzado, Carmen J. Pérez, Emilio M. Burzurí, Enrique Nat Commun Article Spin crossover (SCO) molecules are promising nanoscale magnetic switches due to their ability to modify their spin state under several stimuli. However, SCO systems face several bottlenecks when downscaling into nanoscale spintronic devices: their instability at the nanoscale, their insulating character and the lack of control when positioning nanocrystals in nanodevices. Here we show the encapsulation of robust Fe-based SCO molecules within the 1D cavities of single-walled carbon nanotubes (SWCNT). We find that the SCO mechanism endures encapsulation and positioning of individual heterostructures in nanoscale transistors. The SCO switch in the guest molecules triggers a large conductance bistability through the host SWCNT. Moreover, the SCO transition shifts to higher temperatures and displays hysteresis cycles, and thus memory effect, not present in crystalline samples. Our results demonstrate how encapsulation in SWCNTs provides the backbone for the readout and positioning of SCO molecules into nanodevices, and can also help to tune their magnetic properties at the nanoscale. Nature Publishing Group UK 2021-03-11 /pmc/articles/PMC7952721/ /pubmed/33707459 http://dx.doi.org/10.1038/s41467-021-21791-3 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Villalva, Julia Develioglu, Aysegul Montenegro-Pohlhammer, Nicolas Sánchez-de-Armas, Rocío Gamonal, Arturo Rial, Eduardo García-Hernández, Mar Ruiz-Gonzalez, Luisa Costa, José Sánchez Calzado, Carmen J. Pérez, Emilio M. Burzurí, Enrique Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules |
title | Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules |
title_full | Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules |
title_fullStr | Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules |
title_full_unstemmed | Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules |
title_short | Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules |
title_sort | spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952721/ https://www.ncbi.nlm.nih.gov/pubmed/33707459 http://dx.doi.org/10.1038/s41467-021-21791-3 |
work_keys_str_mv | AT villalvajulia spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT develiogluaysegul spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT montenegropohlhammernicolas spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT sanchezdearmasrocio spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT gamonalarturo spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT rialeduardo spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT garciahernandezmar spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT ruizgonzalezluisa spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT costajosesanchez spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT calzadocarmenj spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT perezemiliom spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules AT burzurienrique spinstatedependentelectricalconductivityinsinglewalledcarbonnanotubesencapsulatingspincrossovermolecules |