Cargando…
Propofol suppresses lung cancer tumorigenesis by modulating the circ‐ERBB2/miR‐7‐5p/FOXM1 axis
BACKGROUND: Propofol is a commonly used anesthetic for cancer surgery. Previous studies have shown that propofol has an anticancer role in various cancers, including lung cancer. This study aimed to investigate the role of propofol in lung cancer and its underlying mechanism. METHODS: Cell prolifera...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons Australia, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952809/ https://www.ncbi.nlm.nih.gov/pubmed/33506582 http://dx.doi.org/10.1111/1759-7714.13856 |
_version_ | 1783663811982524416 |
---|---|
author | Gao, Jie Ding, Chengzhi Zhou, Junhui Wu, Gang Han, Zongmao Li, Jianchao Hei, Feilong |
author_facet | Gao, Jie Ding, Chengzhi Zhou, Junhui Wu, Gang Han, Zongmao Li, Jianchao Hei, Feilong |
author_sort | Gao, Jie |
collection | PubMed |
description | BACKGROUND: Propofol is a commonly used anesthetic for cancer surgery. Previous studies have shown that propofol has an anticancer role in various cancers, including lung cancer. This study aimed to investigate the role of propofol in lung cancer and its underlying mechanism. METHODS: Cell proliferation was determined by cell counting kit‐8 (CCK‐8) and colony formation assays. Flow cytometry and transwell assays were used to detect cell apoptosis and invasion, respectively. Glycolysis was evaluated by detecting glucose consumption, lactate production and ATP/ADP ratios. The levels of circular RNA erb‐b2 receptor tyrosine kinase 2 (circ‐ERBB2), microRNA‐7‐5p (miR‐7‐5p) and forkhead box M1 (FOXM1) were tested by quantitative real‐time PCR and Western blot. The binding relationship between miR‐7‐5p and circ‐ERBB2/FOXM1 was verified by dual‐luciferase reporter assay. Moreover, in vivo experiments were performed by establishing a mouse xenograft model. RESULTS: Propofol suppressed cell proliferation, invasion and glycolysis and expedited apoptosis in lung cancer cells. Circ‐ERBB2 and FOXM1 were upregulated, while miR‐7‐5p was decreased in lung cancer tissues and cells. Propofol suppressed lung cancer cell progression by regulating circ‐ERBB2. Additionally, miR‐7‐5p directly interacted with circ‐ERBB2 and FOXM1. Also, propofol played an antitumor role in lung cancer via modulating miR‐7‐5p or FOXM1. Moreover, circ‐ERBB2 knockdown enhanced the suppressive effect of propofol on tumor growth in vivo. CONCLUSIONS: Propofol inhibited lung cancer progression via mediating circ‐ERBB2/miR‐7‐5p/FOXM1 axis, which might provide an effective therapeutic target for lung cancer therapy. |
format | Online Article Text |
id | pubmed-7952809 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley & Sons Australia, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-79528092021-03-17 Propofol suppresses lung cancer tumorigenesis by modulating the circ‐ERBB2/miR‐7‐5p/FOXM1 axis Gao, Jie Ding, Chengzhi Zhou, Junhui Wu, Gang Han, Zongmao Li, Jianchao Hei, Feilong Thorac Cancer Original Articles BACKGROUND: Propofol is a commonly used anesthetic for cancer surgery. Previous studies have shown that propofol has an anticancer role in various cancers, including lung cancer. This study aimed to investigate the role of propofol in lung cancer and its underlying mechanism. METHODS: Cell proliferation was determined by cell counting kit‐8 (CCK‐8) and colony formation assays. Flow cytometry and transwell assays were used to detect cell apoptosis and invasion, respectively. Glycolysis was evaluated by detecting glucose consumption, lactate production and ATP/ADP ratios. The levels of circular RNA erb‐b2 receptor tyrosine kinase 2 (circ‐ERBB2), microRNA‐7‐5p (miR‐7‐5p) and forkhead box M1 (FOXM1) were tested by quantitative real‐time PCR and Western blot. The binding relationship between miR‐7‐5p and circ‐ERBB2/FOXM1 was verified by dual‐luciferase reporter assay. Moreover, in vivo experiments were performed by establishing a mouse xenograft model. RESULTS: Propofol suppressed cell proliferation, invasion and glycolysis and expedited apoptosis in lung cancer cells. Circ‐ERBB2 and FOXM1 were upregulated, while miR‐7‐5p was decreased in lung cancer tissues and cells. Propofol suppressed lung cancer cell progression by regulating circ‐ERBB2. Additionally, miR‐7‐5p directly interacted with circ‐ERBB2 and FOXM1. Also, propofol played an antitumor role in lung cancer via modulating miR‐7‐5p or FOXM1. Moreover, circ‐ERBB2 knockdown enhanced the suppressive effect of propofol on tumor growth in vivo. CONCLUSIONS: Propofol inhibited lung cancer progression via mediating circ‐ERBB2/miR‐7‐5p/FOXM1 axis, which might provide an effective therapeutic target for lung cancer therapy. John Wiley & Sons Australia, Ltd 2021-01-27 2021-03 /pmc/articles/PMC7952809/ /pubmed/33506582 http://dx.doi.org/10.1111/1759-7714.13856 Text en © 2021 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Articles Gao, Jie Ding, Chengzhi Zhou, Junhui Wu, Gang Han, Zongmao Li, Jianchao Hei, Feilong Propofol suppresses lung cancer tumorigenesis by modulating the circ‐ERBB2/miR‐7‐5p/FOXM1 axis |
title | Propofol suppresses lung cancer tumorigenesis by modulating the circ‐ERBB2/miR‐7‐5p/FOXM1 axis |
title_full | Propofol suppresses lung cancer tumorigenesis by modulating the circ‐ERBB2/miR‐7‐5p/FOXM1 axis |
title_fullStr | Propofol suppresses lung cancer tumorigenesis by modulating the circ‐ERBB2/miR‐7‐5p/FOXM1 axis |
title_full_unstemmed | Propofol suppresses lung cancer tumorigenesis by modulating the circ‐ERBB2/miR‐7‐5p/FOXM1 axis |
title_short | Propofol suppresses lung cancer tumorigenesis by modulating the circ‐ERBB2/miR‐7‐5p/FOXM1 axis |
title_sort | propofol suppresses lung cancer tumorigenesis by modulating the circ‐erbb2/mir‐7‐5p/foxm1 axis |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952809/ https://www.ncbi.nlm.nih.gov/pubmed/33506582 http://dx.doi.org/10.1111/1759-7714.13856 |
work_keys_str_mv | AT gaojie propofolsuppresseslungcancertumorigenesisbymodulatingthecircerbb2mir75pfoxm1axis AT dingchengzhi propofolsuppresseslungcancertumorigenesisbymodulatingthecircerbb2mir75pfoxm1axis AT zhoujunhui propofolsuppresseslungcancertumorigenesisbymodulatingthecircerbb2mir75pfoxm1axis AT wugang propofolsuppresseslungcancertumorigenesisbymodulatingthecircerbb2mir75pfoxm1axis AT hanzongmao propofolsuppresseslungcancertumorigenesisbymodulatingthecircerbb2mir75pfoxm1axis AT lijianchao propofolsuppresseslungcancertumorigenesisbymodulatingthecircerbb2mir75pfoxm1axis AT heifeilong propofolsuppresseslungcancertumorigenesisbymodulatingthecircerbb2mir75pfoxm1axis |