Cargando…
Feature Selection for Breast Cancer Classification by Integrating Somatic Mutation and Gene Expression
Exploring the molecular mechanisms of breast cancer is essential for the early prediction, diagnosis, and treatment of cancer patients. The large scale of data obtained from the high-throughput sequencing technology makes it difficult to identify the driver mutations and a minimal optimal set of gen...
Autores principales: | Jiang, Qin, Jin, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952975/ https://www.ncbi.nlm.nih.gov/pubmed/33719339 http://dx.doi.org/10.3389/fgene.2021.629946 |
Ejemplares similares
-
Integrating Somatic Mutations for Breast Cancer Survival Prediction Using Machine Learning Methods
por: He, Zongzhen, et al.
Publicado: (2021) -
Stratification of Estrogen Receptor-Negative Breast Cancer Patients by Integrating the Somatic Mutations and Transcriptomic Data
por: Hou, Jie, et al.
Publicado: (2021) -
TSNAD: an integrated software for cancer somatic mutation and tumour-specific neoantigen detection
por: Zhou, Zhan, et al.
Publicado: (2017) -
sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic
por: Das, Pijush, et al.
Publicado: (2020) -
Germline PALB2 Mutations in Cancers and Its Distinction From Somatic PALB2 Mutations in Breast Cancers
por: Hu, Zhe-Yu, et al.
Publicado: (2020)