Cargando…
An Efficient Computational Model for Large-Scale Prediction of Protein–Protein Interactions Based on Accurate and Scalable Graph Embedding
Protein–protein interaction (PPI) is the basis of the whole molecular mechanisms of living cells. Although traditional experiments are able to detect PPIs accurately, they often encounter high cost and require more time. As a result, computational methods have been used to predict PPIs to avoid thes...
Autores principales: | Su, Xiao-Rui, You, Zhu-Hong, Hu, Lun, Huang, Yu-An, Wang, Yi, Yi, Hai-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953052/ https://www.ncbi.nlm.nih.gov/pubmed/33719344 http://dx.doi.org/10.3389/fgene.2021.635451 |
Ejemplares similares
-
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023) -
Comparative Analysis of Unsupervised Protein Similarity Prediction Based on Graph Embedding
por: Zhang, Yuanyuan, et al.
Publicado: (2021) -
Editorial: Graph Embedding Methods for Multiple-Omics Data Analysis
por: Lan, Wei, et al.
Publicado: (2021) -
Accurate Prediction of ncRNA-Protein Interactions From the Integration of Sequence and Evolutionary Information
por: Zhan, Zhao-Hui, et al.
Publicado: (2018) -
Hierarchical Microbial Functions Prediction by Graph Aggregated Embedding
por: Hou, Yujie, et al.
Publicado: (2021)