Cargando…

Novel Neuroimaging Biomarker for Sleep Quality in Insomnia Disorder: A Hypothalamus Resting State Study

Despite striking progress in the understanding of the neurobiology of insomnia disorder (ID), about 40% of ID patients do not reach sustained remission with the primary treatments. It is necessary to reveal novel neuroimaging biomarkers for sleep quality in ID. The hypothalamus has a central role in...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Shuang, Gao, Lijuan, Kukun, Hanjiaerbieke, Ai, Kai, Zhao, Wei, Xie, Chao, Wang, Yunling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953135/
https://www.ncbi.nlm.nih.gov/pubmed/33716655
http://dx.doi.org/10.3389/fnins.2021.634984
_version_ 1783663860362772480
author Ding, Shuang
Gao, Lijuan
Kukun, Hanjiaerbieke
Ai, Kai
Zhao, Wei
Xie, Chao
Wang, Yunling
author_facet Ding, Shuang
Gao, Lijuan
Kukun, Hanjiaerbieke
Ai, Kai
Zhao, Wei
Xie, Chao
Wang, Yunling
author_sort Ding, Shuang
collection PubMed
description Despite striking progress in the understanding of the neurobiology of insomnia disorder (ID), about 40% of ID patients do not reach sustained remission with the primary treatments. It is necessary to reveal novel neuroimaging biomarkers for sleep quality in ID. The hypothalamus has a central role in sleep-wake regulation by communicating with different brain regions. However, the functional implications of hypothalamus circuitry with other brain areas remains largely unknown in ID. It may be speculated that dysfunctional circuitry in the hypothalamus is involved in the pathogenesis of ID. Thus, we investigated the different network organizations of the bilateral hypothalamus during the resting-state between 26 ID patients and 28 healthy controls (HC). Correlation analysis has been carried out to link the neuroimaging findings and Pittsburgh sleep quality index (PSQI) scores. Group comparisons reveal that the resting-state functional connectivity (RSFC) between the left hypothalamic region and a few other brain regions, including the medial prefrontal cortex (mPFC) and pallidum, are significantly higher in ID compared with HC. The right inferior temporal cortex showed reduced RSFC with the left hypothalamus. No significantly different RSFC between ID and HC was detected for the right hypothalamus. Positive correlations with PSQI scores were observed for RSFC strength between the left hypothalamus and bilateral mPFC (left: r = 0.2985, p = 0.0393; right: r = 0.3723, p = 0.0056). Similarly, the RSFC strength between the right hypothalamus and bilateral mPFC (left: r = 0.3980, p = 0.0029; right: r = 0.2972, p = 0.0291) also showed significant positive correlations with PSQI scores. In conclusion, we reveal a novel neuroimaging biomarker for sleep quality, i.e., the RSFC strength of the hypothalamus-mPFC pathway. Consistent with the hyperarousal model of ID, our results shed new insights into the implications of the hyper-connection within hypothalamus circuits in the pathology of the ID.
format Online
Article
Text
id pubmed-7953135
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-79531352021-03-13 Novel Neuroimaging Biomarker for Sleep Quality in Insomnia Disorder: A Hypothalamus Resting State Study Ding, Shuang Gao, Lijuan Kukun, Hanjiaerbieke Ai, Kai Zhao, Wei Xie, Chao Wang, Yunling Front Neurosci Neuroscience Despite striking progress in the understanding of the neurobiology of insomnia disorder (ID), about 40% of ID patients do not reach sustained remission with the primary treatments. It is necessary to reveal novel neuroimaging biomarkers for sleep quality in ID. The hypothalamus has a central role in sleep-wake regulation by communicating with different brain regions. However, the functional implications of hypothalamus circuitry with other brain areas remains largely unknown in ID. It may be speculated that dysfunctional circuitry in the hypothalamus is involved in the pathogenesis of ID. Thus, we investigated the different network organizations of the bilateral hypothalamus during the resting-state between 26 ID patients and 28 healthy controls (HC). Correlation analysis has been carried out to link the neuroimaging findings and Pittsburgh sleep quality index (PSQI) scores. Group comparisons reveal that the resting-state functional connectivity (RSFC) between the left hypothalamic region and a few other brain regions, including the medial prefrontal cortex (mPFC) and pallidum, are significantly higher in ID compared with HC. The right inferior temporal cortex showed reduced RSFC with the left hypothalamus. No significantly different RSFC between ID and HC was detected for the right hypothalamus. Positive correlations with PSQI scores were observed for RSFC strength between the left hypothalamus and bilateral mPFC (left: r = 0.2985, p = 0.0393; right: r = 0.3723, p = 0.0056). Similarly, the RSFC strength between the right hypothalamus and bilateral mPFC (left: r = 0.3980, p = 0.0029; right: r = 0.2972, p = 0.0291) also showed significant positive correlations with PSQI scores. In conclusion, we reveal a novel neuroimaging biomarker for sleep quality, i.e., the RSFC strength of the hypothalamus-mPFC pathway. Consistent with the hyperarousal model of ID, our results shed new insights into the implications of the hyper-connection within hypothalamus circuits in the pathology of the ID. Frontiers Media S.A. 2021-02-26 /pmc/articles/PMC7953135/ /pubmed/33716655 http://dx.doi.org/10.3389/fnins.2021.634984 Text en Copyright © 2021 Ding, Gao, Kukun, Ai, Zhao, Xie and Wang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Ding, Shuang
Gao, Lijuan
Kukun, Hanjiaerbieke
Ai, Kai
Zhao, Wei
Xie, Chao
Wang, Yunling
Novel Neuroimaging Biomarker for Sleep Quality in Insomnia Disorder: A Hypothalamus Resting State Study
title Novel Neuroimaging Biomarker for Sleep Quality in Insomnia Disorder: A Hypothalamus Resting State Study
title_full Novel Neuroimaging Biomarker for Sleep Quality in Insomnia Disorder: A Hypothalamus Resting State Study
title_fullStr Novel Neuroimaging Biomarker for Sleep Quality in Insomnia Disorder: A Hypothalamus Resting State Study
title_full_unstemmed Novel Neuroimaging Biomarker for Sleep Quality in Insomnia Disorder: A Hypothalamus Resting State Study
title_short Novel Neuroimaging Biomarker for Sleep Quality in Insomnia Disorder: A Hypothalamus Resting State Study
title_sort novel neuroimaging biomarker for sleep quality in insomnia disorder: a hypothalamus resting state study
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953135/
https://www.ncbi.nlm.nih.gov/pubmed/33716655
http://dx.doi.org/10.3389/fnins.2021.634984
work_keys_str_mv AT dingshuang novelneuroimagingbiomarkerforsleepqualityininsomniadisorderahypothalamusrestingstatestudy
AT gaolijuan novelneuroimagingbiomarkerforsleepqualityininsomniadisorderahypothalamusrestingstatestudy
AT kukunhanjiaerbieke novelneuroimagingbiomarkerforsleepqualityininsomniadisorderahypothalamusrestingstatestudy
AT aikai novelneuroimagingbiomarkerforsleepqualityininsomniadisorderahypothalamusrestingstatestudy
AT zhaowei novelneuroimagingbiomarkerforsleepqualityininsomniadisorderahypothalamusrestingstatestudy
AT xiechao novelneuroimagingbiomarkerforsleepqualityininsomniadisorderahypothalamusrestingstatestudy
AT wangyunling novelneuroimagingbiomarkerforsleepqualityininsomniadisorderahypothalamusrestingstatestudy