Cargando…
Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer
BACKGROUND: Contemporary deep learning approaches show cutting-edge performance in a variety of complex prediction tasks. Nonetheless, the application of deep learning in healthcare remains limited since deep learning methods are often considered as non-interpretable black-box models. However, the m...
Autores principales: | Chereda, Hryhorii, Bleckmann, Annalen, Menck, Kerstin, Perera-Bel, Júlia, Stegmaier, Philip, Auer, Florian, Kramer, Frank, Leha, Andreas, Beißbarth, Tim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953710/ https://www.ncbi.nlm.nih.gov/pubmed/33706810 http://dx.doi.org/10.1186/s13073-021-00845-7 |
Ejemplares similares
-
Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks
por: Alachram, Halima, et al.
Publicado: (2021) -
Integrated miRNA and mRNA profiling of tumor‐educated macrophages identifies prognostic subgroups in estrogen receptor‐positive breast cancer
por: Bleckmann, Annalen, et al.
Publicado: (2014) -
Ror2 Signaling and Its Relevance in Breast Cancer Progression
por: Bayerlová, Michaela, et al.
Publicado: (2017) -
Ensemble-GNN: federated ensemble learning with graph neural networks for disease module discovery and classification
por: Pfeifer, Bastian, et al.
Publicado: (2023) -
Microvesicles in Cancer: Small Size, Large Potential
por: Menck, Kerstin, et al.
Publicado: (2020)