Cargando…
CT-Based Radiomics Signatures for Predicting the Risk Categorization of Thymic Epithelial Tumors
OBJECTIVES: This study aims to assess the performance of radiomics approaches based on 3D computed tomography (CT), clinical and semantic features in predicting the pathological classification of thymic epithelial tumors (TETs). METHODS: A total of 190 patients who underwent surgical resection and h...
Autores principales: | Liu, Jin, Yin, Ping, Wang, Sicong, Liu, Tao, Sun, Chao, Hong, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953900/ https://www.ncbi.nlm.nih.gov/pubmed/33718203 http://dx.doi.org/10.3389/fonc.2021.628534 |
Ejemplares similares
-
CT-Based Radiomics Nomogram for Differentiation of Anterior Mediastinal Thymic Cyst From Thymic Epithelial Tumor
por: Zhang, Chengzhou, et al.
Publicado: (2021) -
Machine and Deep Learning Based Radiomics Models for Preoperative Prediction of Benign and Malignant Sacral Tumors
por: Yin, Ping, et al.
Publicado: (2020) -
Clinical-Deep Neural Network and Clinical-Radiomics Nomograms for Predicting the Intraoperative Massive Blood Loss of Pelvic and Sacral Tumors
por: Yin, Ping, et al.
Publicado: (2021) -
Radiomics Models for the Preoperative Prediction of Pelvic and Sacral Tumor Types: A Single-Center Retrospective Study of 795 Cases
por: Yin, Ping, et al.
Publicado: (2021) -
Computed Tomography-Based Radiomics for Differentiation of Thymic Epithelial Tumors and Lymphomas in Anterior Mediastinum
por: He, Wenzhang, et al.
Publicado: (2022)