Cargando…
Analyzing knowledge entities about COVID-19 using entitymetrics
COVID-19 cases have surpassed the 109 + million markers, with deaths tallying up to 2.4 million. Tens of thousands of papers regarding COVID-19 have been published along with countless bibliometric analyses done on COVID-19 literature. Despite this, none of the analyses have focused on domain entiti...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953944/ https://www.ncbi.nlm.nih.gov/pubmed/33746309 http://dx.doi.org/10.1007/s11192-021-03933-y |
Sumario: | COVID-19 cases have surpassed the 109 + million markers, with deaths tallying up to 2.4 million. Tens of thousands of papers regarding COVID-19 have been published along with countless bibliometric analyses done on COVID-19 literature. Despite this, none of the analyses have focused on domain entities occurring in scientific publications. However, analysis of these bio-entities and the relations among them, a strategy called entity metrics, could offer more insights into knowledge usage and diffusion in specific cases. Thus, this paper presents an entitymetric analysis on COVID-19 literature. We construct an entity–entity co-occurrence network and employ network indicators to analyze the extracted entities. We find that ACE-2 and C-reactive protein are two very important genes and that lopinavir and ritonavir are two very important chemicals, regardless of the results from either ranking. |
---|