Cargando…

Morphological Hydrogel Microfibers with MXene Encapsulation for Electronic Skin

Electronic skins with distinctive features have attracted remarkable attention from researchers because of their promising applications in flexible electronics. Here, we present novel morphologically conductive hydrogel microfibers with MXene encapsulation by using a multi-injection coflow glass cap...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Jiahui, Yu, Yunru, Zhang, Dagan, Zhang, Han, Zhao, Yuanjin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953990/
https://www.ncbi.nlm.nih.gov/pubmed/33763650
http://dx.doi.org/10.34133/2021/7065907
Descripción
Sumario:Electronic skins with distinctive features have attracted remarkable attention from researchers because of their promising applications in flexible electronics. Here, we present novel morphologically conductive hydrogel microfibers with MXene encapsulation by using a multi-injection coflow glass capillary microfluidic chip. The coaxial flows in microchannels together with fast gelation between alginate and calcium ions ensure the formation of hollow straight as well as helical microfibers and guarantee the in situ encapsulation of MXene. The resultant hollow straight and helical MXene hydrogel microfibers were with highly controllable morphologies and package features. Benefiting from the easy manipulation of the microfluidics, the structure compositions and the sizes of MXene hydrogel microfibers could be easily tailored by varying different flow rates. It was demonstrated that these morphologically conductive MXene hydrogel microfibers were with outstanding capabilities of sensitive responses to motion and photothermal stimulations, according to their corresponding resistance changes. Thus, we believe that our morphologically conductive MXene hydrogel microfibers with these excellent features will find important applications in smart flexible electronics especially electronic skins.