Cargando…

De novo genome assembly of Bacillus altitudinis 19RS3 and Bacillus altitudinis T5S-T4, two plant growth-promoting bacteria isolated from Ilex paraguariensis St. Hil. (yerba mate)

Plant growth-promoting bacteria (PGPB) are a heterogeneous group of bacteria that can exert beneficial effects on plant growth directly or indirectly by different mechanisms. PGPB-based inoculant formulation has been used to replace chemical fertilizers and pesticides. In our previous studies, two e...

Descripción completa

Detalles Bibliográficos
Autores principales: Cortese, Iliana Julieta, Castrillo, María Lorena, Onetto, Andrea Liliana, Bich, Gustavo Ángel, Zapata, Pedro Darío, Laczeski, Margarita Ester
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954119/
https://www.ncbi.nlm.nih.gov/pubmed/33705487
http://dx.doi.org/10.1371/journal.pone.0248274
Descripción
Sumario:Plant growth-promoting bacteria (PGPB) are a heterogeneous group of bacteria that can exert beneficial effects on plant growth directly or indirectly by different mechanisms. PGPB-based inoculant formulation has been used to replace chemical fertilizers and pesticides. In our previous studies, two endophytic endospore-forming bacteria identified as Bacillus altitudinis were isolated from roots of Ilex paraguariensis St. Hil. seedlings and selected for their plant growth-promoting (PGP) properties shown in vitro and in vivo. The purposes of this work were to assemble the genomes of B. altitudinis 19RS3 and T5S-T4, using different assemblers available for Windows and Linux and to select the best assembly for each strain. Both genomes were also automatically annotated to detect PGP genes and compare sequences with other genomes reported. Library construction and draft genome sequencing were performed by Macrogen services. Raw reads were filtered using the Trimmomatic tool. Genomes were assembled using SPAdes, ABySS, Velvet, and SOAPdenovo2 assemblers for Linux, and Geneious and CLC Genomics Workbench assemblers for Windows. Assembly evaluation was done by the QUAST tool. The parameters evaluated were the number of contigs ≥ 500 bp and ≥ 1000 bp, the length of the longest contig, and the N50 value. For genome annotation PROKKA, RAST, and KAAS tools were used. The best assembly for both genomes was obtained using Velvet. The B. altitudinis 19RS3 genome was assembled into 15 contigs with an N50 value of 1,943,801 bp. The B. altitudinis T5S-T4 genome was assembled into 24 contigs with an N50 of 344,151 bp. Both genomes comprise several genes related to PGP mechanisms, such as those for nitrogen fixation, iron metabolism, phosphate metabolism, and auxin biosynthesis. The results obtained offer the basis for a better understanding of B. altitudinis 19RS3 and T5S-T4 and make them promissory for bioinoculant development.