Cargando…
DeepMIB: User-friendly and open-source software for training of deep learning network for biological image segmentation
We present DeepMIB, a new software package that is capable of training convolutional neural networks for segmentation of multidimensional microscopy datasets on any workstation. We demonstrate its successful application for segmentation of 2D and 3D electron and multicolor light microscopy datasets...
Autores principales: | Belevich, Ilya, Jokitalo, Eija |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954287/ https://www.ncbi.nlm.nih.gov/pubmed/33651804 http://dx.doi.org/10.1371/journal.pcbi.1008374 |
Ejemplares similares
-
DeepACSON automated segmentation of white matter in 3D electron microscopy
por: Abdollahzadeh, Ali, et al.
Publicado: (2021) -
Code-Free Development and Deployment of Deep Segmentation Models for Digital Pathology
por: Pettersen, Henrik Sahlin, et al.
Publicado: (2022) -
Microscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional Datasets
por: Belevich, Ilya, et al.
Publicado: (2016) -
Open-source deep-learning software for bioimage segmentation
por: Lucas, Alice M., et al.
Publicado: (2021) -
Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells
por: Puhka, Maija, et al.
Publicado: (2012)