Cargando…
Research on multi-path dense networks for MRI spinal segmentation
Accurate and robust segmentation of anatomical structures from magnetic resonance images is valuable in many computer-aided clinical tasks. Traditional codec networks are not satisfactory because of their low accuracy of edge segmentation, the low recognition rate of the target, and loss of detailed...
Autores principales: | Liang, ShuFen, Liu, Huilin, Chen, Chen, Qin, Chuanbo, Yang, FangChen, Feng, Yue, Lin, Zhuosheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954354/ https://www.ncbi.nlm.nih.gov/pubmed/33711080 http://dx.doi.org/10.1371/journal.pone.0248303 |
Ejemplares similares
-
Joint Dense Residual and Recurrent Attention Network for DCE-MRI Breast Tumor Segmentation
por: Qin, ChuanBo, et al.
Publicado: (2022) -
Dense deconvolution net: Multi path fusion and dense deconvolution for high resolution skin lesion segmentation
por: He, Xinzi, et al.
Publicado: (2018) -
Tumor Segmentation in Breast Ultrasound Image by Means of Res Path Combined with Dense Connection Neural Network
por: Yu, Kailuo, et al.
Publicado: (2021) -
Microrobot Path Planning Based on the Multi-Module DWA Method in Crossing Dense Obstacle Scenario
por: Zeng, Dequan, et al.
Publicado: (2023) -
Improved U-Net3+ with stage residual for brain tumor segmentation
por: Qin, Chuanbo, et al.
Publicado: (2022)