Cargando…
Deep Multi-Modal Transfer Learning for Augmented Patient Acuity Assessment in the Intelligent ICU
Accurate prediction and monitoring of patient health in the intensive care unit can inform shared decisions regarding appropriateness of care delivery, risk-reduction strategies, and intensive care resource use. Traditionally, algorithmic solutions for patient outcome prediction rely solely on data...
Autores principales: | Shickel, Benjamin, Davoudi, Anis, Ozrazgat-Baslanti, Tezcan, Ruppert, Matthew, Bihorac, Azra, Rashidi, Parisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954405/ https://www.ncbi.nlm.nih.gov/pubmed/33718920 http://dx.doi.org/10.3389/fdgth.2021.640685 |
Ejemplares similares
-
Multi-dimensional patient acuity estimation with longitudinal EHR tokenization and flexible transformer networks
por: Shickel, Benjamin, et al.
Publicado: (2022) -
Intelligent ICU for Autonomous Patient Monitoring Using Pervasive Sensing and Deep Learning
por: Davoudi, Anis, et al.
Publicado: (2019) -
DeepSOFA: A Continuous Acuity Score for Critically Ill Patients using Clinically Interpretable Deep Learning
por: Shickel, Benjamin, et al.
Publicado: (2019) -
Potentials and Challenges of Pervasive Sensing in the Intensive Care Unit
por: Davoudi, Anis, et al.
Publicado: (2022) -
Dynamic predictions of postoperative complications from explainable, uncertainty-aware, and multi-task deep neural networks
por: Shickel, Benjamin, et al.
Publicado: (2023)