Cargando…
Multiview Self-Supervised Segmentation for OARs Delineation in Radiotherapy
Radiotherapy has become a common treatment option for head and neck (H&N) cancer, and organs at risk (OARs) need to be delineated to implement a high conformal dose distribution. Manual drawing of OARs is time consuming and inaccurate, so automatic drawing based on deep learning models has been...
Autores principales: | Liu, Cong, Zhang, Xiaofei, Si, Wen, Ni, Xinye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954615/ https://www.ncbi.nlm.nih.gov/pubmed/33747116 http://dx.doi.org/10.1155/2021/8894222 |
Ejemplares similares
-
University Oars
Publicado: (1873) -
Application of Hydrogel Spacer SpaceOAR Vue for Prostate Radiotherapy
por: Hadigal, Satvik R., et al.
Publicado: (2022) -
MR-Guided Adaptive Radiotherapy for OAR Sparing in Head and Neck Cancers
por: Mulder, Samuel L., et al.
Publicado: (2022) -
Simultaneous left atrium anatomy and scar segmentations via deep learning in multiview information with attention
por: Yang, Guang, et al.
Publicado: (2020) -
Geometric and Dosimetric Evaluation of the Automatic Delineation of Organs at Risk (OARs) in Non-Small-Cell Lung Cancer Radiotherapy Based on a Modified DenseNet Deep Learning Network
por: Zhang, Fuli, et al.
Publicado: (2022)