Cargando…
Domain adaptation based self-correction model for COVID-19 infection segmentation in CT images
The capability of generalization to unseen domains is crucial for deep learning models when considering real-world scenarios. However, current available medical image datasets, such as those for COVID-19 CT images, have large variations of infections and domain shift problems. To address this issue,...
Autores principales: | Jin, Qiangguo, Cui, Hui, Sun, Changming, Meng, Zhaopeng, Wei, Leyi, Su, Ran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954643/ https://www.ncbi.nlm.nih.gov/pubmed/33746369 http://dx.doi.org/10.1016/j.eswa.2021.114848 |
Ejemplares similares
-
RA-UNet: A Hybrid Deep Attention-Aware Network to Extract Liver and Tumor in CT Scans
por: Jin, Qiangguo, et al.
Publicado: (2020) -
Supervised Brain Tumor Segmentation Based on Gradient and Context-Sensitive Features
por: Zhao, Junting, et al.
Publicado: (2019) -
Unsupervised domain adaptation based COVID-19 CT infection segmentation network
por: Chen, Han, et al.
Publicado: (2021) -
A Boundary-Enhanced Liver Segmentation Network for Multi-Phase CT Images with Unsupervised Domain Adaptation
por: Ananda, Swathi, et al.
Publicado: (2023) -
GFNet: Automatic segmentation of COVID-19 lung infection regions using CT images based on boundary features()
por: Fan, Chaodong, et al.
Publicado: (2022)