Cargando…
Glutamate transporters have a chloride channel with two hydrophobic gates
Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, therefore its precise control is vital for maintaining normal brain function and preventing excitotoxicity1. Removal of extracellular glutamate is achieved by plasma membrane-bound transporters, which couple gl...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954978/ https://www.ncbi.nlm.nih.gov/pubmed/33597752 http://dx.doi.org/10.1038/s41586-021-03240-9 |
_version_ | 1783664171306450944 |
---|---|
author | Chen, Ichia Pant, Shashank Wu, Qianyi Cater, Rosemary Sobti, Meghna Vandenberg, Robert Stewart, Alastair G. Tajkhorshid, Emad Font, Josep Ryan, Renae |
author_facet | Chen, Ichia Pant, Shashank Wu, Qianyi Cater, Rosemary Sobti, Meghna Vandenberg, Robert Stewart, Alastair G. Tajkhorshid, Emad Font, Josep Ryan, Renae |
author_sort | Chen, Ichia |
collection | PubMed |
description | Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, therefore its precise control is vital for maintaining normal brain function and preventing excitotoxicity1. Removal of extracellular glutamate is achieved by plasma membrane-bound transporters, which couple glutamate transport to sodium, potassium and pH gradients using an elevator mechanism(2–5). Glutamate transporters also conduct chloride ions via a channel-like process that is thermodynamically uncoupled from transport(6–8). However, the molecular mechanisms that allow these dual-function transporters to carry out two seemingly contradictory roles are unknown. Here we report the cryo-electron microscopy structure of a glutamate transporter homologue in an open-channel state, revealing an aqueous cavity that is formed during the transport cycle. By studying functional properties combined with molecular dynamics simulations, we show that this cavity is an aqueous-accessible chloride permeation pathway gated by two hydrophobic regions and is conserved across mammalian and archaeal glutamate transporters. Our findings provide insight into the mechanism by which glutamate transporters support their dual function and add a crucial piece of information to aid mapping of the complete transport cycle shared by the SLC1A transporter family. |
format | Online Article Text |
id | pubmed-7954978 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-79549782021-08-17 Glutamate transporters have a chloride channel with two hydrophobic gates Chen, Ichia Pant, Shashank Wu, Qianyi Cater, Rosemary Sobti, Meghna Vandenberg, Robert Stewart, Alastair G. Tajkhorshid, Emad Font, Josep Ryan, Renae Nature Article Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, therefore its precise control is vital for maintaining normal brain function and preventing excitotoxicity1. Removal of extracellular glutamate is achieved by plasma membrane-bound transporters, which couple glutamate transport to sodium, potassium and pH gradients using an elevator mechanism(2–5). Glutamate transporters also conduct chloride ions via a channel-like process that is thermodynamically uncoupled from transport(6–8). However, the molecular mechanisms that allow these dual-function transporters to carry out two seemingly contradictory roles are unknown. Here we report the cryo-electron microscopy structure of a glutamate transporter homologue in an open-channel state, revealing an aqueous cavity that is formed during the transport cycle. By studying functional properties combined with molecular dynamics simulations, we show that this cavity is an aqueous-accessible chloride permeation pathway gated by two hydrophobic regions and is conserved across mammalian and archaeal glutamate transporters. Our findings provide insight into the mechanism by which glutamate transporters support their dual function and add a crucial piece of information to aid mapping of the complete transport cycle shared by the SLC1A transporter family. 2021-02-17 2021-03 /pmc/articles/PMC7954978/ /pubmed/33597752 http://dx.doi.org/10.1038/s41586-021-03240-9 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Chen, Ichia Pant, Shashank Wu, Qianyi Cater, Rosemary Sobti, Meghna Vandenberg, Robert Stewart, Alastair G. Tajkhorshid, Emad Font, Josep Ryan, Renae Glutamate transporters have a chloride channel with two hydrophobic gates |
title | Glutamate transporters have a chloride channel with two hydrophobic gates |
title_full | Glutamate transporters have a chloride channel with two hydrophobic gates |
title_fullStr | Glutamate transporters have a chloride channel with two hydrophobic gates |
title_full_unstemmed | Glutamate transporters have a chloride channel with two hydrophobic gates |
title_short | Glutamate transporters have a chloride channel with two hydrophobic gates |
title_sort | glutamate transporters have a chloride channel with two hydrophobic gates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954978/ https://www.ncbi.nlm.nih.gov/pubmed/33597752 http://dx.doi.org/10.1038/s41586-021-03240-9 |
work_keys_str_mv | AT chenichia glutamatetransportershaveachloridechannelwithtwohydrophobicgates AT pantshashank glutamatetransportershaveachloridechannelwithtwohydrophobicgates AT wuqianyi glutamatetransportershaveachloridechannelwithtwohydrophobicgates AT caterrosemary glutamatetransportershaveachloridechannelwithtwohydrophobicgates AT sobtimeghna glutamatetransportershaveachloridechannelwithtwohydrophobicgates AT vandenbergrobert glutamatetransportershaveachloridechannelwithtwohydrophobicgates AT stewartalastairg glutamatetransportershaveachloridechannelwithtwohydrophobicgates AT tajkhorshidemad glutamatetransportershaveachloridechannelwithtwohydrophobicgates AT fontjosep glutamatetransportershaveachloridechannelwithtwohydrophobicgates AT ryanrenae glutamatetransportershaveachloridechannelwithtwohydrophobicgates |