Cargando…

Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes

Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alle...

Descripción completa

Detalles Bibliográficos
Autores principales: Novikova, Gloriia, Kapoor, Manav, TCW, Julia, Abud, Edsel M., Efthymiou, Anastasia G., Chen, Steven X., Cheng, Haoxiang, Fullard, John F., Bendl, Jaroslav, Liu, Yiyuan, Roussos, Panos, Björkegren, Johan LM, Liu, Yunlong, Poon, Wayne W., Hao, Ke, Marcora, Edoardo, Goate, Alison M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955030/
https://www.ncbi.nlm.nih.gov/pubmed/33712570
http://dx.doi.org/10.1038/s41467-021-21823-y
_version_ 1783664176508436480
author Novikova, Gloriia
Kapoor, Manav
TCW, Julia
Abud, Edsel M.
Efthymiou, Anastasia G.
Chen, Steven X.
Cheng, Haoxiang
Fullard, John F.
Bendl, Jaroslav
Liu, Yiyuan
Roussos, Panos
Björkegren, Johan LM
Liu, Yunlong
Poon, Wayne W.
Hao, Ke
Marcora, Edoardo
Goate, Alison M.
author_facet Novikova, Gloriia
Kapoor, Manav
TCW, Julia
Abud, Edsel M.
Efthymiou, Anastasia G.
Chen, Steven X.
Cheng, Haoxiang
Fullard, John F.
Bendl, Jaroslav
Liu, Yiyuan
Roussos, Panos
Björkegren, Johan LM
Liu, Yunlong
Poon, Wayne W.
Hao, Ke
Marcora, Edoardo
Goate, Alison M.
author_sort Novikova, Gloriia
collection PubMed
description Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1, and ZYX) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility.
format Online
Article
Text
id pubmed-7955030
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-79550302021-03-28 Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes Novikova, Gloriia Kapoor, Manav TCW, Julia Abud, Edsel M. Efthymiou, Anastasia G. Chen, Steven X. Cheng, Haoxiang Fullard, John F. Bendl, Jaroslav Liu, Yiyuan Roussos, Panos Björkegren, Johan LM Liu, Yunlong Poon, Wayne W. Hao, Ke Marcora, Edoardo Goate, Alison M. Nat Commun Article Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1, and ZYX) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility. Nature Publishing Group UK 2021-03-12 /pmc/articles/PMC7955030/ /pubmed/33712570 http://dx.doi.org/10.1038/s41467-021-21823-y Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Novikova, Gloriia
Kapoor, Manav
TCW, Julia
Abud, Edsel M.
Efthymiou, Anastasia G.
Chen, Steven X.
Cheng, Haoxiang
Fullard, John F.
Bendl, Jaroslav
Liu, Yiyuan
Roussos, Panos
Björkegren, Johan LM
Liu, Yunlong
Poon, Wayne W.
Hao, Ke
Marcora, Edoardo
Goate, Alison M.
Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes
title Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes
title_full Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes
title_fullStr Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes
title_full_unstemmed Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes
title_short Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes
title_sort integration of alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955030/
https://www.ncbi.nlm.nih.gov/pubmed/33712570
http://dx.doi.org/10.1038/s41467-021-21823-y
work_keys_str_mv AT novikovagloriia integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes
AT kapoormanav integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes
AT tcwjulia integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes
AT abudedselm integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes
AT efthymiouanastasiag integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes
AT chenstevenx integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes
AT chenghaoxiang integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes
AT fullardjohnf integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes
AT bendljaroslav integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes
AT liuyiyuan integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes
AT roussospanos integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes
AT bjorkegrenjohanlm integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes
AT liuyunlong integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes
AT poonwaynew integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes
AT haoke integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes
AT marcoraedoardo integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes
AT goatealisonm integrationofalzheimersdiseasegeneticsandmyeloidgenomicsidentifiesdiseaseriskregulatoryelementsandgenes