Cargando…
Leveraging graph-based hierarchical medical entity embedding for healthcare applications
Automatic representation learning of key entities in electronic health record (EHR) data is a critical step for healthcare data mining that turns heterogeneous medical records into structured and actionable information. Here we propose ME2Vec, an algorithmic framework for learning continuous low-dim...
Autores principales: | Wu, Tong, Wang, Yunlong, Wang, Yue, Zhao, Emily, Yuan, Yilian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955058/ https://www.ncbi.nlm.nih.gov/pubmed/33712670 http://dx.doi.org/10.1038/s41598-021-85255-w |
Ejemplares similares
-
A Knowledge Graph Entity Disambiguation Method Based on Entity-Relationship Embedding and Graph Structure Embedding
por: Ma, Jiangtao, et al.
Publicado: (2021) -
Graph-Embedding Empowered Entity Retrieval
por: Gerritse, Emma J., et al.
Publicado: (2020) -
Leveraging word embeddings and medical entity extraction for biomedical dataset retrieval using unstructured texts
por: Wang, Yanshan, et al.
Publicado: (2017) -
Hierarchical Microbial Functions Prediction by Graph Aggregated Embedding
por: Hou, Yujie, et al.
Publicado: (2021) -
Dynamic Heterogeneous Graph Embedding Using Hierarchical Attentions
por: Yang, Luwei, et al.
Publicado: (2020)