Cargando…
Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes
Computational methods have made substantial progress in improving the accuracy and throughput of pathology workflows for diagnostic, prognostic, and genomic prediction. Still, lack of interpretability remains a significant barrier to clinical integration. We present an approach for predicting clinic...
Autores principales: | Diao, James A., Wang, Jason K., Chui, Wan Fung, Mountain, Victoria, Gullapally, Sai Chowdary, Srinivasan, Ramprakash, Mitchell, Richard N., Glass, Benjamin, Hoffman, Sara, Rao, Sudha K., Maheshwari, Chirag, Lahiri, Abhik, Prakash, Aaditya, McLoughlin, Ryan, Kerner, Jennifer K., Resnick, Murray B., Montalto, Michael C., Khosla, Aditya, Wapinski, Ilan N., Beck, Andrew H., Elliott, Hunter L., Taylor-Weiner, Amaro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955068/ https://www.ncbi.nlm.nih.gov/pubmed/33712588 http://dx.doi.org/10.1038/s41467-021-21896-9 |
Ejemplares similares
-
Association of artificial intelligence-powered and manual quantification of programmed death-ligand 1 (PD-L1) expression with outcomes in patients treated with nivolumab ± ipilimumab
por: Baxi, Vipul, et al.
Publicado: (2022) -
Integration of deep learning-based histopathology and transcriptomics reveals key genes associated with fibrogenesis in patients with advanced NASH
por: Conway, Jake, et al.
Publicado: (2023) -
An industry perspective: An update on the adoption of whole slide imaging
por: Montalto, Michael C.
Publicado: (2016) -
The accuracy of dynamic predictive autofocusing for whole slide imaging
por: McKay, Richard R., et al.
Publicado: (2011) -
A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH
por: Taylor‐Weiner, Amaro, et al.
Publicado: (2021)