Cargando…
Computational analysis of fused co-expression networks for the identification of candidate cancer gene biomarkers
The complexity of cancer has always been a huge issue in understanding the source of this disease. However, by appreciating its complexity, we can shed some light on crucial gene associations across and in specific cancer types. In this study, we develop a general framework to infer relevant gene bi...
Autores principales: | Pidò, Sara, Ceddia, Gaia, Masseroli, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955132/ https://www.ncbi.nlm.nih.gov/pubmed/33712625 http://dx.doi.org/10.1038/s41540-021-00175-9 |
Ejemplares similares
-
Identification of transcription factor high accumulation DNA zones
por: Cascianelli, Silvia, et al.
Publicado: (2023) -
Computational algorithms to predict Gene Ontology annotations
por: Pinoli, Pietro, et al.
Publicado: (2015) -
Computational Inference of Gene Co-Expression Networks for the identification of Lung Carcinoma Biomarkers: An Ensemble Approach
por: Delgado-Chaves, Fernando M., et al.
Publicado: (2019) -
Identification of Candidate Blood mRNA Biomarkers in Intracerebral Hemorrhage Using Integrated Microarray and Weighted Gene Co-expression Network Analysis
por: Jin, Feng, et al.
Publicado: (2021) -
Integrated network-based multiple computational analyses for identification of co-expressed candidate genes associated with neurological manifestations of COVID-19
por: Hazra, Suvojit, et al.
Publicado: (2022)