Cargando…
Towards a pragmatist dealing with algorithmic bias in medical machine learning
Machine Learning (ML) is on the rise in medicine, promising improved diagnostic, therapeutic and prognostic clinical tools. While these technological innovations are bound to transform health care, they also bring new ethical concerns to the forefront. One particularly elusive challenge regards disc...
Autores principales: | Starke, Georg, De Clercq, Eva, Elger, Bernice S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955212/ https://www.ncbi.nlm.nih.gov/pubmed/33713239 http://dx.doi.org/10.1007/s11019-021-10008-5 |
Ejemplares similares
-
A pragmatist approach to clinical ethics support: overcoming the perils of ethical pluralism
por: Inguaggiato, Giulia, et al.
Publicado: (2019) -
The utility of standardized advance directives: the general practitioners’ perspective
por: Otte, Ina Carola, et al.
Publicado: (2016) -
Dealing with treatment and transfer requests: how PGD-professionals discuss ethical challenges arising in everyday practice
por: Soto-Lafontaine, Melisa, et al.
Publicado: (2017) -
NICE technology appraisals: working with multiple levels of uncertainty and the potential for bias
por: Brown, Patrick, et al.
Publicado: (2011) -
The Deception of Certainty: how Non-Interpretable Machine Learning Outcomes Challenge the Epistemic Authority of Physicians. A deliberative-relational Approach
por: Funer, Florian
Publicado: (2022)