Cargando…
Chronic Hypoxia Decreases Endothelial Connexin 40, Attenuates Endothelium‐Dependent Hyperpolarization–Mediated Relaxation in Small Distal Pulmonary Arteries, and Leads to Pulmonary Hypertension
BACKGROUND: Abnormal endothelial function in the lungs is implicated in the development of pulmonary hypertension; however, there is little information about the difference of endothelial function between small distal pulmonary artery (PA) and large proximal PA and their contribution to the developm...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955394/ https://www.ncbi.nlm.nih.gov/pubmed/33307937 http://dx.doi.org/10.1161/JAHA.120.018327 |
_version_ | 1783664242587598848 |
---|---|
author | Si, Rui Zhang, Qian Cabrera, Jody Tori O. Zheng, Qiuyu Tsuji‐Hosokawa, Atsumi Watanabe, Makiko Hosokawa, Susumu Xiong, Mingmei Jain, Pritesh P. Ashton, Anthony W. Yuan, Jason X.‐J. Wang, Jian Makino, Ayako |
author_facet | Si, Rui Zhang, Qian Cabrera, Jody Tori O. Zheng, Qiuyu Tsuji‐Hosokawa, Atsumi Watanabe, Makiko Hosokawa, Susumu Xiong, Mingmei Jain, Pritesh P. Ashton, Anthony W. Yuan, Jason X.‐J. Wang, Jian Makino, Ayako |
author_sort | Si, Rui |
collection | PubMed |
description | BACKGROUND: Abnormal endothelial function in the lungs is implicated in the development of pulmonary hypertension; however, there is little information about the difference of endothelial function between small distal pulmonary artery (PA) and large proximal PA and their contribution to the development of pulmonary hypertension. Herein, we investigate endothelium‐dependent relaxation in different orders of PAs and examine the molecular mechanisms by which chronic hypoxia attenuates endothelium‐dependent pulmonary vasodilation, leading to pulmonary hypertension. METHODS AND RESULTS: Endothelium‐dependent relaxation in large proximal PAs (second order) was primarily caused by releasing NO from the endothelium, whereas endothelium‐dependent hyperpolarization (EDH)–mediated vasodilation was prominent in small distal PAs (fourth–fifth order). Chronic hypoxia abolished EDH‐mediated relaxation in small distal PAs without affecting smooth muscle–dependent relaxation. RNA‐sequencing data revealed that, among genes related to EDH, the levels of Cx37, Cx40, Cx43, and IK were altered in mouse pulmonary endothelial cells isolated from chronically hypoxic mice in comparison to mouse pulmonary endothelial cells from normoxic control mice. The protein levels were significantly lower for connexin 40 (Cx40) and higher for connexin 37 in mouse pulmonary endothelial cells from hypoxic mice than normoxic mice. Cx40 knockout mice exhibited significant attenuation of EDH‐mediated relaxation and marked increase in right ventricular systolic pressure. Interestingly, chronic hypoxia led to a further increase in right ventricular systolic pressure in Cx40 knockout mice without altering EDH‐mediated relaxation. Furthermore, overexpression of Cx40 significantly decreased right ventricular systolic pressure in chronically hypoxic mice. CONCLUSIONS: These data suggest that chronic hypoxia‐induced downregulation of endothelial Cx40 results in impaired EDH‐mediated relaxation in small distal PAs and contributes to the development of pulmonary hypertension. |
format | Online Article Text |
id | pubmed-7955394 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79553942021-03-17 Chronic Hypoxia Decreases Endothelial Connexin 40, Attenuates Endothelium‐Dependent Hyperpolarization–Mediated Relaxation in Small Distal Pulmonary Arteries, and Leads to Pulmonary Hypertension Si, Rui Zhang, Qian Cabrera, Jody Tori O. Zheng, Qiuyu Tsuji‐Hosokawa, Atsumi Watanabe, Makiko Hosokawa, Susumu Xiong, Mingmei Jain, Pritesh P. Ashton, Anthony W. Yuan, Jason X.‐J. Wang, Jian Makino, Ayako J Am Heart Assoc Original Research BACKGROUND: Abnormal endothelial function in the lungs is implicated in the development of pulmonary hypertension; however, there is little information about the difference of endothelial function between small distal pulmonary artery (PA) and large proximal PA and their contribution to the development of pulmonary hypertension. Herein, we investigate endothelium‐dependent relaxation in different orders of PAs and examine the molecular mechanisms by which chronic hypoxia attenuates endothelium‐dependent pulmonary vasodilation, leading to pulmonary hypertension. METHODS AND RESULTS: Endothelium‐dependent relaxation in large proximal PAs (second order) was primarily caused by releasing NO from the endothelium, whereas endothelium‐dependent hyperpolarization (EDH)–mediated vasodilation was prominent in small distal PAs (fourth–fifth order). Chronic hypoxia abolished EDH‐mediated relaxation in small distal PAs without affecting smooth muscle–dependent relaxation. RNA‐sequencing data revealed that, among genes related to EDH, the levels of Cx37, Cx40, Cx43, and IK were altered in mouse pulmonary endothelial cells isolated from chronically hypoxic mice in comparison to mouse pulmonary endothelial cells from normoxic control mice. The protein levels were significantly lower for connexin 40 (Cx40) and higher for connexin 37 in mouse pulmonary endothelial cells from hypoxic mice than normoxic mice. Cx40 knockout mice exhibited significant attenuation of EDH‐mediated relaxation and marked increase in right ventricular systolic pressure. Interestingly, chronic hypoxia led to a further increase in right ventricular systolic pressure in Cx40 knockout mice without altering EDH‐mediated relaxation. Furthermore, overexpression of Cx40 significantly decreased right ventricular systolic pressure in chronically hypoxic mice. CONCLUSIONS: These data suggest that chronic hypoxia‐induced downregulation of endothelial Cx40 results in impaired EDH‐mediated relaxation in small distal PAs and contributes to the development of pulmonary hypertension. John Wiley and Sons Inc. 2020-12-12 /pmc/articles/PMC7955394/ /pubmed/33307937 http://dx.doi.org/10.1161/JAHA.120.018327 Text en © 2020 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Research Si, Rui Zhang, Qian Cabrera, Jody Tori O. Zheng, Qiuyu Tsuji‐Hosokawa, Atsumi Watanabe, Makiko Hosokawa, Susumu Xiong, Mingmei Jain, Pritesh P. Ashton, Anthony W. Yuan, Jason X.‐J. Wang, Jian Makino, Ayako Chronic Hypoxia Decreases Endothelial Connexin 40, Attenuates Endothelium‐Dependent Hyperpolarization–Mediated Relaxation in Small Distal Pulmonary Arteries, and Leads to Pulmonary Hypertension |
title | Chronic Hypoxia Decreases Endothelial Connexin 40, Attenuates Endothelium‐Dependent Hyperpolarization–Mediated Relaxation in Small Distal Pulmonary Arteries, and Leads to Pulmonary Hypertension |
title_full | Chronic Hypoxia Decreases Endothelial Connexin 40, Attenuates Endothelium‐Dependent Hyperpolarization–Mediated Relaxation in Small Distal Pulmonary Arteries, and Leads to Pulmonary Hypertension |
title_fullStr | Chronic Hypoxia Decreases Endothelial Connexin 40, Attenuates Endothelium‐Dependent Hyperpolarization–Mediated Relaxation in Small Distal Pulmonary Arteries, and Leads to Pulmonary Hypertension |
title_full_unstemmed | Chronic Hypoxia Decreases Endothelial Connexin 40, Attenuates Endothelium‐Dependent Hyperpolarization–Mediated Relaxation in Small Distal Pulmonary Arteries, and Leads to Pulmonary Hypertension |
title_short | Chronic Hypoxia Decreases Endothelial Connexin 40, Attenuates Endothelium‐Dependent Hyperpolarization–Mediated Relaxation in Small Distal Pulmonary Arteries, and Leads to Pulmonary Hypertension |
title_sort | chronic hypoxia decreases endothelial connexin 40, attenuates endothelium‐dependent hyperpolarization–mediated relaxation in small distal pulmonary arteries, and leads to pulmonary hypertension |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955394/ https://www.ncbi.nlm.nih.gov/pubmed/33307937 http://dx.doi.org/10.1161/JAHA.120.018327 |
work_keys_str_mv | AT sirui chronichypoxiadecreasesendothelialconnexin40attenuatesendotheliumdependenthyperpolarizationmediatedrelaxationinsmalldistalpulmonaryarteriesandleadstopulmonaryhypertension AT zhangqian chronichypoxiadecreasesendothelialconnexin40attenuatesendotheliumdependenthyperpolarizationmediatedrelaxationinsmalldistalpulmonaryarteriesandleadstopulmonaryhypertension AT cabrerajodytorio chronichypoxiadecreasesendothelialconnexin40attenuatesendotheliumdependenthyperpolarizationmediatedrelaxationinsmalldistalpulmonaryarteriesandleadstopulmonaryhypertension AT zhengqiuyu chronichypoxiadecreasesendothelialconnexin40attenuatesendotheliumdependenthyperpolarizationmediatedrelaxationinsmalldistalpulmonaryarteriesandleadstopulmonaryhypertension AT tsujihosokawaatsumi chronichypoxiadecreasesendothelialconnexin40attenuatesendotheliumdependenthyperpolarizationmediatedrelaxationinsmalldistalpulmonaryarteriesandleadstopulmonaryhypertension AT watanabemakiko chronichypoxiadecreasesendothelialconnexin40attenuatesendotheliumdependenthyperpolarizationmediatedrelaxationinsmalldistalpulmonaryarteriesandleadstopulmonaryhypertension AT hosokawasusumu chronichypoxiadecreasesendothelialconnexin40attenuatesendotheliumdependenthyperpolarizationmediatedrelaxationinsmalldistalpulmonaryarteriesandleadstopulmonaryhypertension AT xiongmingmei chronichypoxiadecreasesendothelialconnexin40attenuatesendotheliumdependenthyperpolarizationmediatedrelaxationinsmalldistalpulmonaryarteriesandleadstopulmonaryhypertension AT jainpriteshp chronichypoxiadecreasesendothelialconnexin40attenuatesendotheliumdependenthyperpolarizationmediatedrelaxationinsmalldistalpulmonaryarteriesandleadstopulmonaryhypertension AT ashtonanthonyw chronichypoxiadecreasesendothelialconnexin40attenuatesendotheliumdependenthyperpolarizationmediatedrelaxationinsmalldistalpulmonaryarteriesandleadstopulmonaryhypertension AT yuanjasonxj chronichypoxiadecreasesendothelialconnexin40attenuatesendotheliumdependenthyperpolarizationmediatedrelaxationinsmalldistalpulmonaryarteriesandleadstopulmonaryhypertension AT wangjian chronichypoxiadecreasesendothelialconnexin40attenuatesendotheliumdependenthyperpolarizationmediatedrelaxationinsmalldistalpulmonaryarteriesandleadstopulmonaryhypertension AT makinoayako chronichypoxiadecreasesendothelialconnexin40attenuatesendotheliumdependenthyperpolarizationmediatedrelaxationinsmalldistalpulmonaryarteriesandleadstopulmonaryhypertension |