Cargando…
In Search of an Optimal Subset of ECG Features to Augment the Diagnosis of Acute Coronary Syndrome at the Emergency Department
BACKGROUND: Classical ST‐T waveform changes on standard 12‐lead ECG have limited sensitivity in detecting acute coronary syndrome (ACS) in the emergency department. Numerous novel ECG features have been previously proposed to augment clinicians' decision during patient evaluation, yet their cli...
Autores principales: | Bouzid, Zeineb, Faramand, Ziad, Gregg, Richard E., Frisch, Stephanie O., Martin‐Gill, Christian, Saba, Samir, Callaway, Clifton, Sejdić, Ervin, Al‐Zaiti, Salah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955430/ https://www.ncbi.nlm.nih.gov/pubmed/33459029 http://dx.doi.org/10.1161/JAHA.120.017871 |
Ejemplares similares
-
Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram
por: Al-Zaiti, Salah, et al.
Publicado: (2020) -
Machine Learning for the ECG Diagnosis and Risk Stratification of Occlusion Myocardial Infarction at First Medical Contact
por: Al-Zaiti, Salah, et al.
Publicado: (2023) -
Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction
por: Al-Zaiti, Salah S., et al.
Publicado: (2023) -
A Novel Non-Invasive Assessment of Cardiac Hemodynamics in Patients With Heart Failure and Atrial Fibrillation
por: Khraim, Fadi, et al.
Publicado: (2020) -
Clinical Utility of Ventricular Repolarization Dispersion for Real-Time Detection of Non-ST Elevation Myocardial Infarction in Emergency Departments
por: Al-Zaiti, Salah S, et al.
Publicado: (2015)