Cargando…

Changes in the Neurochemical Coding of the Anterior Pelvic Ganglion Neurons Supplying the Male Pig Urinary Bladder Trigone after One-Sided Axotomy of Their Nerve Fibers

The present study investigated the effect of unilateral axotomy of urinary bladder trigone (UBT)-projecting nerve fibers from the right anterior pelvic ganglion (APG) on changes in the chemical coding of their neuronal bodies. The study was performed using male pigs with immunohistochemistry and qua...

Descripción completa

Detalles Bibliográficos
Autores principales: Listowska, Żaneta, Pidsudko, Zenon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956190/
https://www.ncbi.nlm.nih.gov/pubmed/33668086
http://dx.doi.org/10.3390/ijms22052231
_version_ 1783664381950689280
author Listowska, Żaneta
Pidsudko, Zenon
author_facet Listowska, Żaneta
Pidsudko, Zenon
author_sort Listowska, Żaneta
collection PubMed
description The present study investigated the effect of unilateral axotomy of urinary bladder trigone (UBT)-projecting nerve fibers from the right anterior pelvic ganglion (APG) on changes in the chemical coding of their neuronal bodies. The study was performed using male pigs with immunohistochemistry and quantitative real-time PCR (qPCR). The animals were divided into a control (C), a morphological (MG) or a molecular biology group (MBG). APG neurons supplying UBT were revealed using the retrograde tracing technique with Fast Blue (FB). Unilateral axotomy resulted in an over 50% decrease in the number of FB+ neurons in both APG ganglia. Immunohistochemistry revealed significant changes in the chemical coding of FB+ cells only in the right ganglion: decreased expression of dopamine-B-hydroxylase (DBH)/tyrosine hydroxylase (TH) and up-regulation of the vesicular acetylcholine transporter (VAChT)/choline acetyltransferase (ChAT), galanin (GAL), vasoactive intestinal polypeptide (VIP) and brain nitric oxide synthase (bNOS). The qPCR results partly corresponded with immunofluorescence findings. In the APGs, genes for VAChT and ChAT, TH and DBH, VIP, and NOS were distinctly down-regulated, while the expression of GAL was up-regulated. Such data may be the basis for further studies concerning the plasticity of these ganglia under experimental or pathological conditions.
format Online
Article
Text
id pubmed-7956190
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79561902021-03-15 Changes in the Neurochemical Coding of the Anterior Pelvic Ganglion Neurons Supplying the Male Pig Urinary Bladder Trigone after One-Sided Axotomy of Their Nerve Fibers Listowska, Żaneta Pidsudko, Zenon Int J Mol Sci Article The present study investigated the effect of unilateral axotomy of urinary bladder trigone (UBT)-projecting nerve fibers from the right anterior pelvic ganglion (APG) on changes in the chemical coding of their neuronal bodies. The study was performed using male pigs with immunohistochemistry and quantitative real-time PCR (qPCR). The animals were divided into a control (C), a morphological (MG) or a molecular biology group (MBG). APG neurons supplying UBT were revealed using the retrograde tracing technique with Fast Blue (FB). Unilateral axotomy resulted in an over 50% decrease in the number of FB+ neurons in both APG ganglia. Immunohistochemistry revealed significant changes in the chemical coding of FB+ cells only in the right ganglion: decreased expression of dopamine-B-hydroxylase (DBH)/tyrosine hydroxylase (TH) and up-regulation of the vesicular acetylcholine transporter (VAChT)/choline acetyltransferase (ChAT), galanin (GAL), vasoactive intestinal polypeptide (VIP) and brain nitric oxide synthase (bNOS). The qPCR results partly corresponded with immunofluorescence findings. In the APGs, genes for VAChT and ChAT, TH and DBH, VIP, and NOS were distinctly down-regulated, while the expression of GAL was up-regulated. Such data may be the basis for further studies concerning the plasticity of these ganglia under experimental or pathological conditions. MDPI 2021-02-24 /pmc/articles/PMC7956190/ /pubmed/33668086 http://dx.doi.org/10.3390/ijms22052231 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Listowska, Żaneta
Pidsudko, Zenon
Changes in the Neurochemical Coding of the Anterior Pelvic Ganglion Neurons Supplying the Male Pig Urinary Bladder Trigone after One-Sided Axotomy of Their Nerve Fibers
title Changes in the Neurochemical Coding of the Anterior Pelvic Ganglion Neurons Supplying the Male Pig Urinary Bladder Trigone after One-Sided Axotomy of Their Nerve Fibers
title_full Changes in the Neurochemical Coding of the Anterior Pelvic Ganglion Neurons Supplying the Male Pig Urinary Bladder Trigone after One-Sided Axotomy of Their Nerve Fibers
title_fullStr Changes in the Neurochemical Coding of the Anterior Pelvic Ganglion Neurons Supplying the Male Pig Urinary Bladder Trigone after One-Sided Axotomy of Their Nerve Fibers
title_full_unstemmed Changes in the Neurochemical Coding of the Anterior Pelvic Ganglion Neurons Supplying the Male Pig Urinary Bladder Trigone after One-Sided Axotomy of Their Nerve Fibers
title_short Changes in the Neurochemical Coding of the Anterior Pelvic Ganglion Neurons Supplying the Male Pig Urinary Bladder Trigone after One-Sided Axotomy of Their Nerve Fibers
title_sort changes in the neurochemical coding of the anterior pelvic ganglion neurons supplying the male pig urinary bladder trigone after one-sided axotomy of their nerve fibers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956190/
https://www.ncbi.nlm.nih.gov/pubmed/33668086
http://dx.doi.org/10.3390/ijms22052231
work_keys_str_mv AT listowskazaneta changesintheneurochemicalcodingoftheanteriorpelvicganglionneuronssupplyingthemalepigurinarybladdertrigoneafteronesidedaxotomyoftheirnervefibers
AT pidsudkozenon changesintheneurochemicalcodingoftheanteriorpelvicganglionneuronssupplyingthemalepigurinarybladdertrigoneafteronesidedaxotomyoftheirnervefibers