Cargando…
Dissecting Response to Cancer Immunotherapy by Applying Bayesian Network Analysis to Flow Cytometry Data
Cancer immunotherapy, specifically immune checkpoint blockade, has been found to be effective in the treatment of metastatic cancers. However, only a subset of patients achieve clinical responses. Elucidating pretreatment biomarkers predictive of sustained clinical response is a major research prior...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956201/ https://www.ncbi.nlm.nih.gov/pubmed/33652558 http://dx.doi.org/10.3390/ijms22052316 |
_version_ | 1783664384495583232 |
---|---|
author | Rodin, Andrei S. Gogoshin, Grigoriy Hilliard, Seth Wang, Lei Egelston, Colt Rockne, Russell C. Chao, Joseph Lee, Peter P. |
author_facet | Rodin, Andrei S. Gogoshin, Grigoriy Hilliard, Seth Wang, Lei Egelston, Colt Rockne, Russell C. Chao, Joseph Lee, Peter P. |
author_sort | Rodin, Andrei S. |
collection | PubMed |
description | Cancer immunotherapy, specifically immune checkpoint blockade, has been found to be effective in the treatment of metastatic cancers. However, only a subset of patients achieve clinical responses. Elucidating pretreatment biomarkers predictive of sustained clinical response is a major research priority. Another research priority is evaluating changes in the immune system before and after treatment in responders vs. nonresponders. Our group has been studying immune networks as an accurate reflection of the global immune state. Flow cytometry (FACS, fluorescence-activated cell sorting) data characterizing immune cell panels in peripheral blood mononuclear cells (PBMC) from gastroesophageal adenocarcinoma (GEA) patients were used to analyze changes in immune networks in this setting. Here, we describe a novel computational pipeline to perform secondary analyses of FACS data using systems biology/machine learning techniques and concepts. The pipeline is centered around comparative Bayesian network analyses of immune networks and is capable of detecting strong signals that conventional methods (such as FlowJo manual gating) might miss. Future studies are planned to validate and follow up the immune biomarkers (and combinations/interactions thereof) associated with clinical responses identified with this computational pipeline. |
format | Online Article Text |
id | pubmed-7956201 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79562012021-03-15 Dissecting Response to Cancer Immunotherapy by Applying Bayesian Network Analysis to Flow Cytometry Data Rodin, Andrei S. Gogoshin, Grigoriy Hilliard, Seth Wang, Lei Egelston, Colt Rockne, Russell C. Chao, Joseph Lee, Peter P. Int J Mol Sci Article Cancer immunotherapy, specifically immune checkpoint blockade, has been found to be effective in the treatment of metastatic cancers. However, only a subset of patients achieve clinical responses. Elucidating pretreatment biomarkers predictive of sustained clinical response is a major research priority. Another research priority is evaluating changes in the immune system before and after treatment in responders vs. nonresponders. Our group has been studying immune networks as an accurate reflection of the global immune state. Flow cytometry (FACS, fluorescence-activated cell sorting) data characterizing immune cell panels in peripheral blood mononuclear cells (PBMC) from gastroesophageal adenocarcinoma (GEA) patients were used to analyze changes in immune networks in this setting. Here, we describe a novel computational pipeline to perform secondary analyses of FACS data using systems biology/machine learning techniques and concepts. The pipeline is centered around comparative Bayesian network analyses of immune networks and is capable of detecting strong signals that conventional methods (such as FlowJo manual gating) might miss. Future studies are planned to validate and follow up the immune biomarkers (and combinations/interactions thereof) associated with clinical responses identified with this computational pipeline. MDPI 2021-02-26 /pmc/articles/PMC7956201/ /pubmed/33652558 http://dx.doi.org/10.3390/ijms22052316 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rodin, Andrei S. Gogoshin, Grigoriy Hilliard, Seth Wang, Lei Egelston, Colt Rockne, Russell C. Chao, Joseph Lee, Peter P. Dissecting Response to Cancer Immunotherapy by Applying Bayesian Network Analysis to Flow Cytometry Data |
title | Dissecting Response to Cancer Immunotherapy by Applying Bayesian Network Analysis to Flow Cytometry Data |
title_full | Dissecting Response to Cancer Immunotherapy by Applying Bayesian Network Analysis to Flow Cytometry Data |
title_fullStr | Dissecting Response to Cancer Immunotherapy by Applying Bayesian Network Analysis to Flow Cytometry Data |
title_full_unstemmed | Dissecting Response to Cancer Immunotherapy by Applying Bayesian Network Analysis to Flow Cytometry Data |
title_short | Dissecting Response to Cancer Immunotherapy by Applying Bayesian Network Analysis to Flow Cytometry Data |
title_sort | dissecting response to cancer immunotherapy by applying bayesian network analysis to flow cytometry data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956201/ https://www.ncbi.nlm.nih.gov/pubmed/33652558 http://dx.doi.org/10.3390/ijms22052316 |
work_keys_str_mv | AT rodinandreis dissectingresponsetocancerimmunotherapybyapplyingbayesiannetworkanalysistoflowcytometrydata AT gogoshingrigoriy dissectingresponsetocancerimmunotherapybyapplyingbayesiannetworkanalysistoflowcytometrydata AT hilliardseth dissectingresponsetocancerimmunotherapybyapplyingbayesiannetworkanalysistoflowcytometrydata AT wanglei dissectingresponsetocancerimmunotherapybyapplyingbayesiannetworkanalysistoflowcytometrydata AT egelstoncolt dissectingresponsetocancerimmunotherapybyapplyingbayesiannetworkanalysistoflowcytometrydata AT rocknerussellc dissectingresponsetocancerimmunotherapybyapplyingbayesiannetworkanalysistoflowcytometrydata AT chaojoseph dissectingresponsetocancerimmunotherapybyapplyingbayesiannetworkanalysistoflowcytometrydata AT leepeterp dissectingresponsetocancerimmunotherapybyapplyingbayesiannetworkanalysistoflowcytometrydata |