Cargando…

Carbon Fiber Reinforced Multi-Phase Epoxy Syntactic Foam (CFR-Epoxy-Hardener/HGMS/Aerogel-R-Hollow Epoxy Macrosphere(AR-HEMS))

Because the aerogel has ultra-low density and good impact resistance, the aerogel material, epoxy-hardener system, and expandable polystyrene beads (EPS) were used to prepare the lightweight aerogel reinforced hollow epoxy macro-spheres (AR-HEMS). The multi-phase epoxy syntactic foam (ESF) was manuf...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Xinfeng, Gao, Yuan, Jiang, Tao, Wang, Ying, Yang, Ke, Liu, Tengshi, Sun, Kai, Zhao, Yuantao, Li, Wenge, Yu, Jinhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956284/
https://www.ncbi.nlm.nih.gov/pubmed/33668296
http://dx.doi.org/10.3390/polym13050683
Descripción
Sumario:Because the aerogel has ultra-low density and good impact resistance, the aerogel material, epoxy-hardener system, and expandable polystyrene beads (EPS) were used to prepare the lightweight aerogel reinforced hollow epoxy macro-spheres (AR-HEMS). The multi-phase epoxy syntactic foam (ESF) was manufactured with the epoxy-hardener system, HGMS (EP-hardener-HGMS), and AR-HEMS by “the compression modeling method.” In this experiment, in order to enhance the strength of the ESF, some different kinds of the carbon fiber (CF) were added into the EP-hardener-HGMS system (CFR-EP). The influence of the volume stacking fraction, inner diameter, and layer of the AR-HEMS and the content and type of the CF in the EP-HGMS (CFR-EP) system on the compressive strength of the ESF were studied. Weighing the two factors of the density and compressive strength, the ESF reinforced by 1.5 wt% CF with 90% AR-HEMS has the better performance. This kind of the ESF has 0.428 g/cm(3) nd 20.76 Mpa, which could be applied in 2076 m deep sea.