Cargando…

Polypropylene/Ethylene—And Polar—Monomer-Based Copolymers/Montmorillonite Nanocomposites: Morphology, Mechanical Properties, and Oxygen Permeability

This research reports the influence of polar monomer contents in ethylene vinyl acetate copolymer (EVA) and ethylene vinyl alcohol copolymer (EVOH) on the morphology, mechanical and barrier properties of polypropylene/ethylene copolymer (PP) reinforced with organically modified montmorillonite (MMT)...

Descripción completa

Detalles Bibliográficos
Autores principales: Castro-Landinez, Juan Felipe, Salcedo-Galan, Felipe, Medina-Perilla, Jorge Alberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956292/
https://www.ncbi.nlm.nih.gov/pubmed/33652600
http://dx.doi.org/10.3390/polym13050705
Descripción
Sumario:This research reports the influence of polar monomer contents in ethylene vinyl acetate copolymer (EVA) and ethylene vinyl alcohol copolymer (EVOH) on the morphology, mechanical and barrier properties of polypropylene/ethylene copolymer (PP) reinforced with organically modified montmorillonite (MMT). PP/EVA and PP/EVOH (75/25 wt %) blends were reinforced with 3 wt % MMT in an internal mixer system. Samples were compression-molded into films of 300 [Formula: see text]. The structural characterization was made using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the mechanical properties were obtained by tension tests and the barrier properties by oxygen transmission rate (OTR). XRD patterns showed a combination of intercalated/exfoliated morphologies for the MMT, with higher d-001 interplanar distance increments for the blends with higher content of polar functional groups. SEM and TEM micrographs complement the results of the XRD analysis and show differences in the morphologies depending on the miscibility of the polyolefin and the polar monomer copolymer. Mechanical properties and oxygen permeability of composites exhibited a higher improvement, by the addition of MMT, for higher intermolecular interactions and most miscible polymeric system of the EVA. These results show that the higher the number of interactions, given by the VA or OH polar functional groups, the morphology and the miscibility between polyolefin and copolymer imply dispersion improvements of the nanocomposites and, in consequence, a higher improvement on the mechanical and barrier properties of the composite material.