Cargando…
Health Monitoring of Large-Scale Civil Structures: An Approach Based on Data Partitioning and Classical Multidimensional Scaling
A major challenge in structural health monitoring (SHM) is the efficient handling of big data, namely of high-dimensional datasets, when damage detection under environmental variability is being assessed. To address this issue, a novel data-driven approach to early damage detection is proposed here....
Autores principales: | Entezami, Alireza, Sarmadi, Hassan, Behkamal, Behshid, Mariani, Stefano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956361/ https://www.ncbi.nlm.nih.gov/pubmed/33652995 http://dx.doi.org/10.3390/s21051646 |
Ejemplares similares
-
Big Data Analytics and Structural Health Monitoring: A Statistical Pattern Recognition-Based Approach
por: Entezami, Alireza, et al.
Publicado: (2020) -
Detection of Partially Structural Collapse Using Long-Term Small Displacement Data from Satellite Images
por: Entezami, Alireza, et al.
Publicado: (2022) -
Multidimensional scaling for large genomic data sets
por: Tzeng, Jengnan, et al.
Publicado: (2008) -
A novel methodology for large-scale phylogeny partition
por: Prosperi, Mattia C.F., et al.
Publicado: (2011) -
Multidimensional scaling /
por: Cox, Trevor F.
Publicado: (2001)