Cargando…
Generative Adversarial Learning of Protein Tertiary Structures
Protein molecules are inherently dynamic and modulate their interactions with different molecular partners by accessing different tertiary structures under physiological conditions. Elucidating such structures remains challenging. Current momentum in deep learning and the powerful performance of gen...
Autores principales: | Rahman, Taseef, Du, Yuanqi, Zhao, Liang, Shehu, Amarda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956369/ https://www.ncbi.nlm.nih.gov/pubmed/33668217 http://dx.doi.org/10.3390/molecules26051209 |
Ejemplares similares
-
Generating tertiary protein structures via interpretable graph variational autoencoders
por: Guo, Xiaojie, et al.
Publicado: (2021) -
Evaluating Autoencoder-Based Featurization and Supervised Learning for Protein Decoy Selection
por: Alam, Fardina Fathmiul, et al.
Publicado: (2020) -
Data Size and Quality Matter: Generating Physically-Realistic Distance Maps of Protein Tertiary Structures
por: Alam, Fardina Fathmiul, et al.
Publicado: (2022) -
Reducing Ensembles of Protein Tertiary Structures Generated De Novo via Clustering
por: Zaman, Ahmed Bin, et al.
Publicado: (2020) -
From Extraction of Local Structures of Protein Energy Landscapes to Improved Decoy Selection in Template-Free Protein Structure Prediction
por: Akhter, Nasrin, et al.
Publicado: (2018)