Cargando…
AgriPest: A Large-Scale Domain-Specific Benchmark Dataset for Practical Agricultural Pest Detection in the Wild
The recent explosion of large volume of standard dataset of annotated images has offered promising opportunities for deep learning techniques in effective and efficient object detection applications. However, due to a huge difference of quality between these standardized dataset and practical raw da...
Autores principales: | Wang, Rujing, Liu, Liu, Xie, Chengjun, Yang, Po, Li, Rui, Zhou, Man |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956390/ https://www.ncbi.nlm.nih.gov/pubmed/33668820 http://dx.doi.org/10.3390/s21051601 |
Ejemplares similares
-
AgriPest-YOLO: A rapid light-trap agricultural pest detection method based on deep learning
por: Zhang, Wei, et al.
Publicado: (2022) -
An Efficient Pest Detection Framework with a Medium-Scale Benchmark to Increase the Agricultural Productivity
por: Aladhadh, Suliman, et al.
Publicado: (2022) -
Editorial: Deep learning in crop diseases and insect pests
por: Chen, Peng, et al.
Publicado: (2023) -
Prior knowledge auxiliary for few-shot pest detection in the wild
por: Wang, Xiaodong, et al.
Publicado: (2023) -
A Dataset for Forestry Pest Identification
por: Liu, Bing, et al.
Publicado: (2022)