Cargando…

The Interface between Nanoenergy and Self-Powered Electronics

In recent decades, nanogenerators based on several techniques such as triboelectric effects, piezoelectric effects, or other mechanisms have experienced great developments. The nanoenergy generated by nanogenerators is supposed to be used to overcome the problem of energy supply problems for portabl...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yi-Lin, Deng, Hai-Tao, Ren, Zhen-Yu, Liu, Xin-Tian, Chen, Yu, Tu, Cheng, Chen, Jun-Lian, Zhang, Xiao-Sheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956396/
https://www.ncbi.nlm.nih.gov/pubmed/33668954
http://dx.doi.org/10.3390/s21051614
Descripción
Sumario:In recent decades, nanogenerators based on several techniques such as triboelectric effects, piezoelectric effects, or other mechanisms have experienced great developments. The nanoenergy generated by nanogenerators is supposed to be used to overcome the problem of energy supply problems for portable electronics and to be applied to self-powered microsystems including sensors, actuators, integrated circuits, power sources, and so on. Researchers made many attempts to achieve a good solution and have performed many explorations. Massive efforts have been devoted to developing self-powered electronics, such as self-powered communication devices, self-powered human–machine interfaces, and self-powered sensors. To take full advantage of nanoenergy, we need to review the existing applications, look for similarities and differences, and then explore the ways of achieving various self-powered systems with better performance. In this review, the methods of applying nanogenerators in specific circumstances are studied. The applications of nanogenerators are classified into two categories, direct utilization and indirect utilization, according to whether a treatment process is needed. We expect to offer a line of thought for future research on self-powered electronics.