Cargando…
Forecasting of Glucose Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven Algorithms Based on Continuous Glucose Monitoring Data Only
In type 1 diabetes management, the availability of algorithms capable of accurately forecasting future blood glucose (BG) concentrations and hypoglycemic episodes could enable proactive therapeutic actions, e.g., the consumption of carbohydrates to mitigate, or even avoid, an impending critical even...
Autores principales: | Prendin, Francesco, Del Favero, Simone, Vettoretti, Martina, Sparacino, Giovanni, Facchinetti, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956406/ https://www.ncbi.nlm.nih.gov/pubmed/33673415 http://dx.doi.org/10.3390/s21051647 |
Ejemplares similares
-
An analytical approach to determine the optimal duration of continuous glucose monitoring data required to reliably estimate time in hypoglycemia
por: Camerlingo, Nunzio, et al.
Publicado: (2020) -
Design of clinical trials to assess diabetes treatment: Minimum duration of continuous glucose monitoring data to estimate time‐in‐ranges with the desired precision
por: Camerlingo, Nunzio, et al.
Publicado: (2021) -
Continuous Glucose Monitoring Sensors for Diabetes Management: A Review of Technologies and Applications
por: Cappon, Giacomo, et al.
Publicado: (2019) -
Advanced Diabetes Management Using Artificial Intelligence and Continuous Glucose Monitoring Sensors
por: Vettoretti, Martina, et al.
Publicado: (2020) -
Calibration of Minimally Invasive Continuous Glucose Monitoring Sensors: State-of-The-Art and Current Perspectives
por: Acciaroli, Giada, et al.
Publicado: (2018)