Cargando…
An Adaptive Weight Learning-Based Multitask Deep Network for Continuous Blood Pressure Estimation Using Electrocardiogram Signals
Estimating blood pressure via combination analysis with electrocardiogram and photoplethysmography signals has attracted growing interest in continuous monitoring patients’ health conditions. However, most wearable/portal monitoring devices generally acquire only one kind of physiological signals du...
Autores principales: | Fan, Xiaomao, Wang, Hailiang, Zhao, Yang, Li, Ye, Tsui, Kwok Leung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956522/ https://www.ncbi.nlm.nih.gov/pubmed/33668778 http://dx.doi.org/10.3390/s21051595 |
Ejemplares similares
-
Forecasting one-day-forward wellness conditions for community-dwelling elderly with single lead short electrocardiogram signals
por: Fan, Xiaomao, et al.
Publicado: (2019) -
Continuous Blood Pressure Estimation From Electrocardiogram and Photoplethysmogram During Arrhythmias
por: Liu, ZengDing, et al.
Publicado: (2020) -
Combined deep CNN–LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features
por: Jeong, Da Un, et al.
Publicado: (2021) -
A Multi-Parameter Fusion Method for Cuffless Continuous Blood Pressure Estimation Based on Electrocardiogram and Photoplethysmogram
por: Ma, Gang, et al.
Publicado: (2023) -
Area-based breast percentage density estimation in mammograms using weight-adaptive multitask learning
por: Gudhe, Naga Raju, et al.
Publicado: (2022)