Cargando…
Reversal of Multidrug Resistance by Apolipoprotein A1-Modified Doxorubicin Liposome for Breast Cancer Treatment
Multidrug resistance (MDR) remains a major problem in cancer therapy and is characterized by the overexpression of p-glycoprotein (P-gp) efflux pump, upregulation of anti-apoptotic proteins or downregulation of pro-apoptotic proteins. In this study, an Apolipoprotein A1 (ApoA1)-modified cationic lip...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956628/ https://www.ncbi.nlm.nih.gov/pubmed/33652957 http://dx.doi.org/10.3390/molecules26051280 |
Sumario: | Multidrug resistance (MDR) remains a major problem in cancer therapy and is characterized by the overexpression of p-glycoprotein (P-gp) efflux pump, upregulation of anti-apoptotic proteins or downregulation of pro-apoptotic proteins. In this study, an Apolipoprotein A1 (ApoA1)-modified cationic liposome containing a synthetic cationic lipid and cholesterol was developed for the delivery of a small-molecule chemotherapeutic drug, doxorubicin (Dox) to treat MDR tumor. The liposome-modified by ApoA1 was found to promote drug uptake and elicit better therapeutic effects than free Dox and liposome in MCF-7/ADR cells. Further, loading Dox into the present ApoA1-liposome systems enabled a burst release at the tumor location, resulting in enhanced anti-tumor effects and reduced off-target effects. More importantly, ApoA1-lip/Dox caused fewer adverse effects on cardiac function and other organs in 4T1 subcutaneous xenograft models. These features indicate that the designed liposomes represent a promising strategy for the reversal of MDR in cancer treatment. |
---|