Cargando…
Androgen Receptor Binding Category Prediction with Deep Neural Networks and Structure-, Ligand-, and Statistically Based Features
Substances that can modify the androgen receptor pathway in humans and animals are entering the environment and food chain with the proven ability to disrupt hormonal systems and leading to toxicity and adverse effects on reproduction, brain development, and prostate cancer, among others. State-of-t...
Autor principal: | García-Sosa, Alfonso T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956632/ https://www.ncbi.nlm.nih.gov/pubmed/33652992 http://dx.doi.org/10.3390/molecules26051285 |
Ejemplares similares
-
Structure of the homodimeric androgen receptor ligand-binding domain
por: Nadal, Marta, et al.
Publicado: (2017) -
Predicting protein-ligand binding residues with deep convolutional neural networks
por: Cui, Yifeng, et al.
Publicado: (2019) -
A disease category feature database construction method of brain image based on deep convolutional neural network
por: Wan, Yanli, et al.
Publicado: (2020) -
Shared spatiotemporal category representations in biological and artificial deep neural networks
por: Greene, Michelle R., et al.
Publicado: (2018) -
Sperm motility assessed by deep convolutional neural networks into WHO categories
por: Haugen, Trine B., et al.
Publicado: (2023)