Cargando…
Feasibility of Machine Learning Algorithms for Predicting the Deformation of Anodic Titanium Films by Modulating Anodization Processes
This study aims to demonstrate the feasibility of applying eight machine learning algorithms to predict the classification of the surface characteristics of titanium oxide (TiO(2)) nanostructures with different anodization processes. We produced a total of 100 samples, and we assessed changes in TiO...
Autores principales: | Kim, Sung-Hee, Jeong, Chanyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956670/ https://www.ncbi.nlm.nih.gov/pubmed/33652708 http://dx.doi.org/10.3390/ma14051089 |
Ejemplares similares
-
Anodizing of Hydrogenated Titanium and Zirconium Films
por: Poznyak, Alexander, et al.
Publicado: (2021) -
Control of the Nanopore Architecture of Anodic Alumina via Stepwise Anodization with Voltage Modulation and Pore Widening
por: Jeong, Chanyoung, et al.
Publicado: (2023) -
Systematic Control of Anodic Aluminum Oxide Nanostructures for Enhancing the Superhydrophobicity of 5052 Aluminum Alloy
por: Jeong, Chanyoung, et al.
Publicado: (2019) -
Formation of Nanoporous Anodic Alumina by Anodization of Aluminum Films on Glass Substrates
por: Lebyedyeva, Tetyana, et al.
Publicado: (2016) -
Surface characteristics and bioactivity of an anodized titanium surface
por: Kim, Kyul, et al.
Publicado: (2013)