Cargando…
Random Forest Modelling of High-Dimensional Mixed-Type Data for Breast Cancer Classification
SIMPLE SUMMARY: Breast cancer is a complex disease, and the identification of its underlying molecular mechanisms is critical for the development of treatment strategies. The purpose of this study was to implement a computational framework that is capable of combining many types of data into a meani...
Autores principales: | Quist, Jelmar, Taylor, Lawson, Staaf, Johan, Grigoriadis, Anita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956671/ https://www.ncbi.nlm.nih.gov/pubmed/33673506 http://dx.doi.org/10.3390/cancers13050991 |
Ejemplares similares
-
Pan-cancer transcriptomic analysis dissects immune and proliferative functions of APOBEC3 cytidine deaminases
por: Ng, Joseph C F, et al.
Publicado: (2019) -
Systemic immune reaction in axillary lymph nodes adds to tumor-infiltrating lymphocytes in triple-negative breast cancer prognostication
por: Liu, Fangfang, et al.
Publicado: (2021) -
Mouse mammary stem cells express prognostic markers for triple-negative breast cancer
por: Soady, Kelly J, et al.
Publicado: (2015) -
Adipose-enriched peri-tumoral stroma, in contrast to myofibroblast-enriched stroma, prognosticates poorer survival in breast cancers
por: Lau, Hannah Si Hui, et al.
Publicado: (2023) -
Tumor purity adjusted beta values improve biological interpretability of high-dimensional DNA methylation data
por: Staaf, Johan, et al.
Publicado: (2022)