Cargando…
Dietary Methionine Deficiency Enhances Genetic Instability in Murine Immune Cells
Both cell and animal studies have shown that complete or partial deficiency of methionine inhibits tumor growth. Consequently, the potential implementation of this nutritional intervention has recently been of great interest for the treatment of cancer patients. Unfortunately, diet alteration can al...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956689/ https://www.ncbi.nlm.nih.gov/pubmed/33673497 http://dx.doi.org/10.3390/ijms22052378 |
_version_ | 1783664494115815424 |
---|---|
author | Binz, Regina L. Sadhukhan, Ratan Miousse, Isabelle R. Garg, Sarita Koturbash, Igor Zhou, Daohong Hauer-Jensen, Martin Pathak, Rupak |
author_facet | Binz, Regina L. Sadhukhan, Ratan Miousse, Isabelle R. Garg, Sarita Koturbash, Igor Zhou, Daohong Hauer-Jensen, Martin Pathak, Rupak |
author_sort | Binz, Regina L. |
collection | PubMed |
description | Both cell and animal studies have shown that complete or partial deficiency of methionine inhibits tumor growth. Consequently, the potential implementation of this nutritional intervention has recently been of great interest for the treatment of cancer patients. Unfortunately, diet alteration can also affect healthy immune cells such as monocytes/macrophages and their precursor cells in bone marrow. As around half of cancer patients are treated with radiotherapy, the potential deleterious effect of dietary methionine deficiency on immune cells prior to and/or following irradiation needs to be evaluated. Therefore, we examined whether modulation of methionine content alters genetic stability in the murine RAW 264.7 monocyte/macrophage cell line in vitro by chromosomal analysis after 1-month culture in a methionine-deficient or supplemented medium. We also analyzed chromosomal aberrations in the bone marrow cells of CBA/J mice fed with methionine-deficient or supplemented diet for 2 months. While all RAW 264.7 cells revealed a complex translocation involving three chromosomes, three different clones based on the banding pattern of chromosome 9 were identified. Methionine deficiency altered the ratio of the three clones and increased chromosomal aberrations and DNA damage in RAW 264.7. Methionine deficiency also increased radiation-induced chromosomal aberration and DNA damage in RAW 264.7 cells. Furthermore, mice maintained on a methionine-deficient diet showed more chromosomal aberrations in bone marrow cells than those given methionine-adequate or supplemented diets. These findings suggest that caution is warranted for clinical implementation of methionine-deficient diet concurrent with conventional cancer therapy. |
format | Online Article Text |
id | pubmed-7956689 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79566892021-03-16 Dietary Methionine Deficiency Enhances Genetic Instability in Murine Immune Cells Binz, Regina L. Sadhukhan, Ratan Miousse, Isabelle R. Garg, Sarita Koturbash, Igor Zhou, Daohong Hauer-Jensen, Martin Pathak, Rupak Int J Mol Sci Article Both cell and animal studies have shown that complete or partial deficiency of methionine inhibits tumor growth. Consequently, the potential implementation of this nutritional intervention has recently been of great interest for the treatment of cancer patients. Unfortunately, diet alteration can also affect healthy immune cells such as monocytes/macrophages and their precursor cells in bone marrow. As around half of cancer patients are treated with radiotherapy, the potential deleterious effect of dietary methionine deficiency on immune cells prior to and/or following irradiation needs to be evaluated. Therefore, we examined whether modulation of methionine content alters genetic stability in the murine RAW 264.7 monocyte/macrophage cell line in vitro by chromosomal analysis after 1-month culture in a methionine-deficient or supplemented medium. We also analyzed chromosomal aberrations in the bone marrow cells of CBA/J mice fed with methionine-deficient or supplemented diet for 2 months. While all RAW 264.7 cells revealed a complex translocation involving three chromosomes, three different clones based on the banding pattern of chromosome 9 were identified. Methionine deficiency altered the ratio of the three clones and increased chromosomal aberrations and DNA damage in RAW 264.7. Methionine deficiency also increased radiation-induced chromosomal aberration and DNA damage in RAW 264.7 cells. Furthermore, mice maintained on a methionine-deficient diet showed more chromosomal aberrations in bone marrow cells than those given methionine-adequate or supplemented diets. These findings suggest that caution is warranted for clinical implementation of methionine-deficient diet concurrent with conventional cancer therapy. MDPI 2021-02-27 /pmc/articles/PMC7956689/ /pubmed/33673497 http://dx.doi.org/10.3390/ijms22052378 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Binz, Regina L. Sadhukhan, Ratan Miousse, Isabelle R. Garg, Sarita Koturbash, Igor Zhou, Daohong Hauer-Jensen, Martin Pathak, Rupak Dietary Methionine Deficiency Enhances Genetic Instability in Murine Immune Cells |
title | Dietary Methionine Deficiency Enhances Genetic Instability in Murine Immune Cells |
title_full | Dietary Methionine Deficiency Enhances Genetic Instability in Murine Immune Cells |
title_fullStr | Dietary Methionine Deficiency Enhances Genetic Instability in Murine Immune Cells |
title_full_unstemmed | Dietary Methionine Deficiency Enhances Genetic Instability in Murine Immune Cells |
title_short | Dietary Methionine Deficiency Enhances Genetic Instability in Murine Immune Cells |
title_sort | dietary methionine deficiency enhances genetic instability in murine immune cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956689/ https://www.ncbi.nlm.nih.gov/pubmed/33673497 http://dx.doi.org/10.3390/ijms22052378 |
work_keys_str_mv | AT binzreginal dietarymethioninedeficiencyenhancesgeneticinstabilityinmurineimmunecells AT sadhukhanratan dietarymethioninedeficiencyenhancesgeneticinstabilityinmurineimmunecells AT miousseisabeller dietarymethioninedeficiencyenhancesgeneticinstabilityinmurineimmunecells AT gargsarita dietarymethioninedeficiencyenhancesgeneticinstabilityinmurineimmunecells AT koturbashigor dietarymethioninedeficiencyenhancesgeneticinstabilityinmurineimmunecells AT zhoudaohong dietarymethioninedeficiencyenhancesgeneticinstabilityinmurineimmunecells AT hauerjensenmartin dietarymethioninedeficiencyenhancesgeneticinstabilityinmurineimmunecells AT pathakrupak dietarymethioninedeficiencyenhancesgeneticinstabilityinmurineimmunecells |