Cargando…

Assessment of DSM Based on Radiometric Transformation of UAV Data

Unmanned Aerial Vehicle (UAV) is one of the latest technologies for high spatial resolution 3D modeling of the Earth. The objectives of this study are to assess low-cost UAV data using image radiometric transformation techniques and investigate its effects on global and local accuracy of the Digital...

Descripción completa

Detalles Bibliográficos
Autores principales: Chaudhry, Muhammad Hamid, Ahmad, Anuar, Gulzar, Qudsia, Farid, Muhammad Shahid, Shahabi, Himan, Al-Ansari, Nadhir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956773/
https://www.ncbi.nlm.nih.gov/pubmed/33673425
http://dx.doi.org/10.3390/s21051649
Descripción
Sumario:Unmanned Aerial Vehicle (UAV) is one of the latest technologies for high spatial resolution 3D modeling of the Earth. The objectives of this study are to assess low-cost UAV data using image radiometric transformation techniques and investigate its effects on global and local accuracy of the Digital Surface Model (DSM). This research uses UAV Light Detection and Ranging (LIDAR) data from 80 m and UAV Drone data from 300 and 500 m flying height. RAW UAV images acquired from 500 m flying height are radiometrically transformed in Matrix Laboratory (MATLAB). UAV images from 300 m flying height are processed for the generation of 3D point cloud and DSM in Pix4D Mapper. UAV LIDAR data are used for the acquisition of Ground Control Points (GCP) and accuracy assessment of UAV Image data products. Accuracy of enhanced DSM with DSM generated from 300 m flight height were analyzed for point cloud number, density and distribution. Root Mean Square Error (RMSE) value of Z is enhanced from ±2.15 m to ±0.11 m. For local accuracy assessment of DSM, four different types of land covers are statistically compared with UAV LIDAR resulting in compatibility of enhancement technique with UAV LIDAR accuracy.