Cargando…

Investigation of Carbon Nanotube Grafted Graphene Oxide Hybrid Aerogel for Polystyrene Composites with Reinforced Mechanical Performance

The rational design of carbon nanomaterials-reinforced polymer matrix composites based on the excellent properties of three-dimensional porous materials still remains a significant challenge. Herein, a novel approach is developed for preparing large-scale 3D carbon nanotubes (CNTs) and graphene oxid...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Yanzeng, Xu, Hui, Zhao, Zetian, Zhang, Lina, Ma, Lichun, Zhao, Guozheng, Song, Guojun, Li, Xiaoru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956833/
https://www.ncbi.nlm.nih.gov/pubmed/33673525
http://dx.doi.org/10.3390/polym13050735
Descripción
Sumario:The rational design of carbon nanomaterials-reinforced polymer matrix composites based on the excellent properties of three-dimensional porous materials still remains a significant challenge. Herein, a novel approach is developed for preparing large-scale 3D carbon nanotubes (CNTs) and graphene oxide (GO) aerogel (GO-CNTA) by direct grafting of CNTs onto GO. Following this, styrene was backfilled into the prepared aerogel and polymerized in situ to form GO–CNTA/polystyrene (PS) nanocomposites. The results of X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy indicate the successful establishment of CNTs and GO-CNT and the excellent mechanical properties of the 3D frameworks using GO-CNT aerogel. The nanocomposite fabricated with around 1.0 wt% GO-CNT aerogel displayed excellent thermal conductivity of 0.127 W/m∙K and its mechanical properties were significantly enhanced compared with pristine PS, with its tensile, flexural, and compressive strengths increased by 9.01%, 46.8%, and 59.8%, respectively. This facile preparation method provides a new route for facilitating their large-scale production.