Cargando…
Applying machine learning to balance performance and stability of high energy density materials
The long-standing performance-stability contradiction issue of high energy density materials (HEDMs) is of extremely complex and multi-parameter nature. Herein, machine learning was employed to handle 28 feature descriptors and 5 properties of detonation and stability of 153 HEDMs, wherein all 21,64...
Autores principales: | Huang, Xiaona, Li, Chongyang, Tan, Kaiyuan, Wen, Yushi, Guo, Feng, Li, Ming, Huang, Yongli, Sun, Chang Q., Gozin, Michael, Zhang, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957118/ https://www.ncbi.nlm.nih.gov/pubmed/33748721 http://dx.doi.org/10.1016/j.isci.2021.102240 |
Ejemplares similares
-
Strategies for Achieving Balance between Detonation Performance and Crystal Stability of High-Energy-Density Materials
por: Li, Chongyang, et al.
Publicado: (2020) -
A series of N-trinitromethyl-substituted polynitro-pyrazoles: high-energy-density materials with positive oxygen balances
por: Ding, Lujia, et al.
Publicado: (2022) -
Advanced High Energy Density Secondary Batteries with Multi‐Electron Reaction Materials
por: Chen, Renjie, et al.
Publicado: (2016) -
An energy self-compensating phosphosilicate material applied to temperature sensors
por: Chen, Jiang, et al.
Publicado: (2018) -
Molecular and
Crystal Features of Thermostable Energetic
Materials: Guidelines for Architecture of “Bridged”
Compounds
por: Li, Hui, et al.
Publicado: (2019)