Cargando…
Epigenome-wide association study on diffusing capacity of the lung
BACKGROUND: Epigenetics may play an important role in the pathogenesis of lung diseases. However, little is known about the epigenetic factors that influence impaired gas exchange at the lung. AIM: To identify the epigenetic signatures of the diffusing capacity of the lung measured by carbon monoxid...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
European Respiratory Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957297/ https://www.ncbi.nlm.nih.gov/pubmed/33748261 http://dx.doi.org/10.1183/23120541.00567-2020 |
_version_ | 1783664626235342848 |
---|---|
author | Terzikhan, Natalie Xu, Hanfei Edris, Ahmed Bracke, Ken R. Verhamme, Fien M. Stricker, Bruno H.C. Dupuis, Josée Lahousse, Lies O'Connor, George T. Brusselle, Guy G. |
author_facet | Terzikhan, Natalie Xu, Hanfei Edris, Ahmed Bracke, Ken R. Verhamme, Fien M. Stricker, Bruno H.C. Dupuis, Josée Lahousse, Lies O'Connor, George T. Brusselle, Guy G. |
author_sort | Terzikhan, Natalie |
collection | PubMed |
description | BACKGROUND: Epigenetics may play an important role in the pathogenesis of lung diseases. However, little is known about the epigenetic factors that influence impaired gas exchange at the lung. AIM: To identify the epigenetic signatures of the diffusing capacity of the lung measured by carbon monoxide uptake (the diffusing capacity of the lung for carbon monoxide (D(LCO))). METHODS: An epigenome-wide association study (EWAS) was performed on diffusing capacity, measured by carbon monoxide uptake (D(LCO)) and per alveolar volume (V(A)) (as D(LCO)/V(A)), using the single-breath technique in 2674 individuals from two population-based cohort studies. These were the Rotterdam Study (RS, the “discovery panel”) and the Framingham Heart Study (FHS, the “replication panel”). We assessed the clinical relevance of our findings by investigating the identified sites in whole blood and by lung tissue specific gene expression. RESULTS: We identified and replicated two CpG sites (cg05575921 and cg05951221) that were significantly associated with D(LCO)/V(A) and one (cg05575921) suggestively associated with D(LCO). Furthermore, we found a positive association between aryl hydrocarbon receptor repressor (AHRR) gene (cg05575921) hypomethylation and gene expression of exocyst complex component 3 (EXOC3) in whole blood. We confirmed that the expression of EXOC3 in lung tissue is positively associated with D(LCO)/V(A) and D(LCO). CONCLUSIONS: We report on epigenome-wide associations with diffusing capacity in the general population. Our results suggest EXOC3 to be an excellent candidate, through which smoking-induced hypomethylation of AHRR might affect pulmonary gas exchange. |
format | Online Article Text |
id | pubmed-7957297 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | European Respiratory Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-79572972021-03-18 Epigenome-wide association study on diffusing capacity of the lung Terzikhan, Natalie Xu, Hanfei Edris, Ahmed Bracke, Ken R. Verhamme, Fien M. Stricker, Bruno H.C. Dupuis, Josée Lahousse, Lies O'Connor, George T. Brusselle, Guy G. ERJ Open Res Original Articles BACKGROUND: Epigenetics may play an important role in the pathogenesis of lung diseases. However, little is known about the epigenetic factors that influence impaired gas exchange at the lung. AIM: To identify the epigenetic signatures of the diffusing capacity of the lung measured by carbon monoxide uptake (the diffusing capacity of the lung for carbon monoxide (D(LCO))). METHODS: An epigenome-wide association study (EWAS) was performed on diffusing capacity, measured by carbon monoxide uptake (D(LCO)) and per alveolar volume (V(A)) (as D(LCO)/V(A)), using the single-breath technique in 2674 individuals from two population-based cohort studies. These were the Rotterdam Study (RS, the “discovery panel”) and the Framingham Heart Study (FHS, the “replication panel”). We assessed the clinical relevance of our findings by investigating the identified sites in whole blood and by lung tissue specific gene expression. RESULTS: We identified and replicated two CpG sites (cg05575921 and cg05951221) that were significantly associated with D(LCO)/V(A) and one (cg05575921) suggestively associated with D(LCO). Furthermore, we found a positive association between aryl hydrocarbon receptor repressor (AHRR) gene (cg05575921) hypomethylation and gene expression of exocyst complex component 3 (EXOC3) in whole blood. We confirmed that the expression of EXOC3 in lung tissue is positively associated with D(LCO)/V(A) and D(LCO). CONCLUSIONS: We report on epigenome-wide associations with diffusing capacity in the general population. Our results suggest EXOC3 to be an excellent candidate, through which smoking-induced hypomethylation of AHRR might affect pulmonary gas exchange. European Respiratory Society 2021-03-15 /pmc/articles/PMC7957297/ /pubmed/33748261 http://dx.doi.org/10.1183/23120541.00567-2020 Text en Copyright ©ERS 2021 http://creativecommons.org/licenses/by-nc/4.0/This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. |
spellingShingle | Original Articles Terzikhan, Natalie Xu, Hanfei Edris, Ahmed Bracke, Ken R. Verhamme, Fien M. Stricker, Bruno H.C. Dupuis, Josée Lahousse, Lies O'Connor, George T. Brusselle, Guy G. Epigenome-wide association study on diffusing capacity of the lung |
title | Epigenome-wide association study on diffusing capacity of the lung |
title_full | Epigenome-wide association study on diffusing capacity of the lung |
title_fullStr | Epigenome-wide association study on diffusing capacity of the lung |
title_full_unstemmed | Epigenome-wide association study on diffusing capacity of the lung |
title_short | Epigenome-wide association study on diffusing capacity of the lung |
title_sort | epigenome-wide association study on diffusing capacity of the lung |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957297/ https://www.ncbi.nlm.nih.gov/pubmed/33748261 http://dx.doi.org/10.1183/23120541.00567-2020 |
work_keys_str_mv | AT terzikhannatalie epigenomewideassociationstudyondiffusingcapacityofthelung AT xuhanfei epigenomewideassociationstudyondiffusingcapacityofthelung AT edrisahmed epigenomewideassociationstudyondiffusingcapacityofthelung AT brackekenr epigenomewideassociationstudyondiffusingcapacityofthelung AT verhammefienm epigenomewideassociationstudyondiffusingcapacityofthelung AT strickerbrunohc epigenomewideassociationstudyondiffusingcapacityofthelung AT dupuisjosee epigenomewideassociationstudyondiffusingcapacityofthelung AT lahousselies epigenomewideassociationstudyondiffusingcapacityofthelung AT oconnorgeorget epigenomewideassociationstudyondiffusingcapacityofthelung AT brusselleguyg epigenomewideassociationstudyondiffusingcapacityofthelung |