Cargando…
Schistosoma mansoni venom allergen-like protein 6 (SmVAL6) maintains tegumental barrier function
The Schistosoma mansoni venom allergen-like protein (SmVAL) superfamily is a collection of at least 29 molecules that have been classified into two distinctive groups (Group 1 and Group 2 SmVALs). The fundamental basis for SmVAL segregation relates to signal peptide and conserved cysteine retention...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957364/ https://www.ncbi.nlm.nih.gov/pubmed/33253697 http://dx.doi.org/10.1016/j.ijpara.2020.09.004 |
_version_ | 1783664634449887232 |
---|---|
author | Perally, Samirah Geyer, Kathrin K. Farani, Priscila S.G. Chalmers, Iain W. Fernandez-Fuentes, Narcis Maskell, Daniel R. Hulme, Benjamin J. Forde-Thomas, Josephine Phillips, Dylan Farias, Leonardo P. Collins, James J. Hoffmann, Karl F. |
author_facet | Perally, Samirah Geyer, Kathrin K. Farani, Priscila S.G. Chalmers, Iain W. Fernandez-Fuentes, Narcis Maskell, Daniel R. Hulme, Benjamin J. Forde-Thomas, Josephine Phillips, Dylan Farias, Leonardo P. Collins, James J. Hoffmann, Karl F. |
author_sort | Perally, Samirah |
collection | PubMed |
description | The Schistosoma mansoni venom allergen-like protein (SmVAL) superfamily is a collection of at least 29 molecules that have been classified into two distinctive groups (Group 1 and Group 2 SmVALs). The fundamental basis for SmVAL segregation relates to signal peptide and conserved cysteine retention (present in all Group 1 SmVALs, but absent in all Group 2 SmVALs). These structural differences have led to the hypothesis that most Group 1 SmVALs, found as components of schistosome excretory/secretory (E/S) products, predominantly interact with their environment (intermediate or definitive hosts) whereas the Group 2 SmVALs are retained within the schistosome to fulfil parasite-related functions. While experimental evidence to support Group 1 SmVAL/host interactions is growing, similar support for identification of parasite-related Group 2 SmVAL functions is currently lacking. By applying a combination of approaches to the study of SmVAL6, we provide the first known evidence for an essential function of a Group 2 SmVAL in schistosome biology. After whole mount in situ hybridisation (WISH) localised Smval6 to the anterior region of the oesophageal gland (AOG) and cells scattered through the mesenchyme in adult schistosomes, short interfering RNA (siRNA)-mediated silencing of Smval6 was employed to assess loss of function phenotypes. Here, siSmval6-mediated knockdown of transcript and protein levels led to an increase in tegumental permeability as assessed by the quantification of TAMRA-labelled dextran throughout sub-tegumental cells/tissues. Yeast two hybrid screening using SmVAL6 as a bait revealed Sm14 (a fatty acid binding protein) and a dynein light chain (DLC) as directly interacting partners. Interrogation of single-cell RNA-seq (scRNA-seq) data supported these protein interactions by demonstrating the spatial co-expression of Smval6/dlc/Sm14 in a small proportion of adult cell types (e.g. neurons, tegumental cells and neoblasts). In silico modelling of SmVAL6 with Sm14 and DLC provided evidence that opposing faces of SmVAL6 were likely responsible for these protein/protein interactions. Our results suggest that SmVAL6 participates in oesophageal biology, formation of higher order protein complexes and maintenance of tegumental barrier function. Further studies of other Group 2 SmVALs may reveal additional functions of this enigmatic superfamily. |
format | Online Article Text |
id | pubmed-7957364 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-79573642021-03-19 Schistosoma mansoni venom allergen-like protein 6 (SmVAL6) maintains tegumental barrier function Perally, Samirah Geyer, Kathrin K. Farani, Priscila S.G. Chalmers, Iain W. Fernandez-Fuentes, Narcis Maskell, Daniel R. Hulme, Benjamin J. Forde-Thomas, Josephine Phillips, Dylan Farias, Leonardo P. Collins, James J. Hoffmann, Karl F. Int J Parasitol Article The Schistosoma mansoni venom allergen-like protein (SmVAL) superfamily is a collection of at least 29 molecules that have been classified into two distinctive groups (Group 1 and Group 2 SmVALs). The fundamental basis for SmVAL segregation relates to signal peptide and conserved cysteine retention (present in all Group 1 SmVALs, but absent in all Group 2 SmVALs). These structural differences have led to the hypothesis that most Group 1 SmVALs, found as components of schistosome excretory/secretory (E/S) products, predominantly interact with their environment (intermediate or definitive hosts) whereas the Group 2 SmVALs are retained within the schistosome to fulfil parasite-related functions. While experimental evidence to support Group 1 SmVAL/host interactions is growing, similar support for identification of parasite-related Group 2 SmVAL functions is currently lacking. By applying a combination of approaches to the study of SmVAL6, we provide the first known evidence for an essential function of a Group 2 SmVAL in schistosome biology. After whole mount in situ hybridisation (WISH) localised Smval6 to the anterior region of the oesophageal gland (AOG) and cells scattered through the mesenchyme in adult schistosomes, short interfering RNA (siRNA)-mediated silencing of Smval6 was employed to assess loss of function phenotypes. Here, siSmval6-mediated knockdown of transcript and protein levels led to an increase in tegumental permeability as assessed by the quantification of TAMRA-labelled dextran throughout sub-tegumental cells/tissues. Yeast two hybrid screening using SmVAL6 as a bait revealed Sm14 (a fatty acid binding protein) and a dynein light chain (DLC) as directly interacting partners. Interrogation of single-cell RNA-seq (scRNA-seq) data supported these protein interactions by demonstrating the spatial co-expression of Smval6/dlc/Sm14 in a small proportion of adult cell types (e.g. neurons, tegumental cells and neoblasts). In silico modelling of SmVAL6 with Sm14 and DLC provided evidence that opposing faces of SmVAL6 were likely responsible for these protein/protein interactions. Our results suggest that SmVAL6 participates in oesophageal biology, formation of higher order protein complexes and maintenance of tegumental barrier function. Further studies of other Group 2 SmVALs may reveal additional functions of this enigmatic superfamily. Elsevier Science 2021-03 /pmc/articles/PMC7957364/ /pubmed/33253697 http://dx.doi.org/10.1016/j.ijpara.2020.09.004 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Perally, Samirah Geyer, Kathrin K. Farani, Priscila S.G. Chalmers, Iain W. Fernandez-Fuentes, Narcis Maskell, Daniel R. Hulme, Benjamin J. Forde-Thomas, Josephine Phillips, Dylan Farias, Leonardo P. Collins, James J. Hoffmann, Karl F. Schistosoma mansoni venom allergen-like protein 6 (SmVAL6) maintains tegumental barrier function |
title | Schistosoma mansoni venom allergen-like protein 6 (SmVAL6) maintains tegumental barrier function |
title_full | Schistosoma mansoni venom allergen-like protein 6 (SmVAL6) maintains tegumental barrier function |
title_fullStr | Schistosoma mansoni venom allergen-like protein 6 (SmVAL6) maintains tegumental barrier function |
title_full_unstemmed | Schistosoma mansoni venom allergen-like protein 6 (SmVAL6) maintains tegumental barrier function |
title_short | Schistosoma mansoni venom allergen-like protein 6 (SmVAL6) maintains tegumental barrier function |
title_sort | schistosoma mansoni venom allergen-like protein 6 (smval6) maintains tegumental barrier function |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957364/ https://www.ncbi.nlm.nih.gov/pubmed/33253697 http://dx.doi.org/10.1016/j.ijpara.2020.09.004 |
work_keys_str_mv | AT perallysamirah schistosomamansonivenomallergenlikeprotein6smval6maintainstegumentalbarrierfunction AT geyerkathrink schistosomamansonivenomallergenlikeprotein6smval6maintainstegumentalbarrierfunction AT faranipriscilasg schistosomamansonivenomallergenlikeprotein6smval6maintainstegumentalbarrierfunction AT chalmersiainw schistosomamansonivenomallergenlikeprotein6smval6maintainstegumentalbarrierfunction AT fernandezfuentesnarcis schistosomamansonivenomallergenlikeprotein6smval6maintainstegumentalbarrierfunction AT maskelldanielr schistosomamansonivenomallergenlikeprotein6smval6maintainstegumentalbarrierfunction AT hulmebenjaminj schistosomamansonivenomallergenlikeprotein6smval6maintainstegumentalbarrierfunction AT fordethomasjosephine schistosomamansonivenomallergenlikeprotein6smval6maintainstegumentalbarrierfunction AT phillipsdylan schistosomamansonivenomallergenlikeprotein6smval6maintainstegumentalbarrierfunction AT fariasleonardop schistosomamansonivenomallergenlikeprotein6smval6maintainstegumentalbarrierfunction AT collinsjamesj schistosomamansonivenomallergenlikeprotein6smval6maintainstegumentalbarrierfunction AT hoffmannkarlf schistosomamansonivenomallergenlikeprotein6smval6maintainstegumentalbarrierfunction |