Cargando…
Deep Reinforcement Learning-Based Task Scheduling in IoT Edge Computing
Edge computing (EC) has recently emerged as a promising paradigm that supports resource-hungry Internet of Things (IoT) applications with low latency services at the network edge. However, the limited capacity of computing resources at the edge server poses great challenges for scheduling applicatio...
Autores principales: | Sheng, Shuran, Chen, Peng, Chen, Zhimin, Wu, Lenan, Yao, Yuxuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957605/ https://www.ncbi.nlm.nih.gov/pubmed/33671072 http://dx.doi.org/10.3390/s21051666 |
Ejemplares similares
-
IoT and Edge Computing for Architects
por: Lea, Perry
Publicado: (2020) -
QoS-Based Service-Time Scheduling in the IoT-Edge Cloud
por: Mutichiro, Briytone, et al.
Publicado: (2021) -
Deep Learning-Based Construction and Processing of Multimodal Corpus for IoT Devices in Mobile Edge Computing
por: Liang, Chu, et al.
Publicado: (2022) -
A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks
por: Wu, Guanlin, et al.
Publicado: (2018) -
Edge/Fog Computing Technologies for IoT Infrastructure
por: Kim, Taehong, et al.
Publicado: (2021)